File: absorbed_power_density.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (90 lines) | stat: -rw-r--r-- 3,105 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt

import meep as mp
from meep.materials import SiO2

resolution = 100  # pixels/um

dpml = 1.0
pml_layers = [mp.PML(thickness=dpml)]

r = 1.0     # radius of cylinder
dair = 2.0  # air padding thickness

s = 2*(dpml+dair+r)
cell_size = mp.Vector3(s,s)

wvl = 1.0
fcen = 1/wvl

# is_integrated=True necessary for any planewave source extending into PML
sources = [mp.Source(mp.GaussianSource(fcen,fwidth=0.1*fcen,is_integrated=True),
                     center=mp.Vector3(-0.5*s+dpml),
                     size=mp.Vector3(0,s),
                     component=mp.Ez)]

symmetries = [mp.Mirror(mp.Y)]

geometry = [mp.Cylinder(material=SiO2,
                        center=mp.Vector3(),
                        radius=r,
                        height=mp.inf)]

sim = mp.Simulation(resolution=resolution,
                    cell_size=cell_size,
                    boundary_layers=pml_layers,
                    sources=sources,
                    k_point=mp.Vector3(),
                    symmetries=symmetries,
                    geometry=geometry)

dft_fields = sim.add_dft_fields([mp.Dz,mp.Ez],
                                fcen,0,1,
                                center=mp.Vector3(),
                                size=mp.Vector3(2*r,2*r),
                                yee_grid=True)

# closed box surrounding cylinder for computing total incoming flux
flux_box = sim.add_flux(fcen, 0, 1,
                        mp.FluxRegion(center=mp.Vector3(x=-r),size=mp.Vector3(0,2*r),weight=+1),
                        mp.FluxRegion(center=mp.Vector3(x=+r),size=mp.Vector3(0,2*r),weight=-1),
                        mp.FluxRegion(center=mp.Vector3(y=+r),size=mp.Vector3(2*r,0),weight=-1),
                        mp.FluxRegion(center=mp.Vector3(y=-r),size=mp.Vector3(2*r,0),weight=+1))

sim.run(until_after_sources=100)

Dz = sim.get_dft_array(dft_fields,mp.Dz,0)
Ez = sim.get_dft_array(dft_fields,mp.Ez,0)
absorbed_power_density = 2*np.pi*fcen * np.imag(np.conj(Ez)*Dz)

dxy = 1/resolution**2
absorbed_power = np.sum(absorbed_power_density)*dxy
absorbed_flux = mp.get_fluxes(flux_box)[0]
err = abs(absorbed_power-absorbed_flux)/absorbed_flux
print("flux:, {} (dft_fields), {} (dft_flux), {} (error)".format(absorbed_power,absorbed_flux,err))

plt.figure()
sim.plot2D()
plt.savefig('power_density_cell.png',dpi=150,bbox_inches='tight')

plt.figure()
x = np.linspace(-r,r,Dz.shape[0])
y = np.linspace(-r,r,Dz.shape[1])
plt.pcolormesh(x,
               y,
               np.transpose(absorbed_power_density),
               cmap='inferno_r',
               shading='gouraud',
               vmin=0,
               vmax=np.amax(absorbed_power_density))
plt.xlabel("x (μm)")
plt.xticks(np.linspace(-r,r,5))
plt.ylabel("y (μm)")
plt.yticks(np.linspace(-r,r,5))
plt.gca().set_aspect('equal')
plt.title("absorbed power density" + "\n" +"SiO2 Labs(λ={} μm) = {:.2f} μm".format(wvl,wvl/np.imag(np.sqrt(SiO2.epsilon(fcen)[0][0]))))
plt.colorbar()
plt.savefig('power_density_map.png',dpi=150,bbox_inches='tight')