File: antenna-radiation.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (88 lines) | stat: -rw-r--r-- 3,552 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import division

import meep as mp
import math
import numpy as np
import matplotlib.pyplot as plt

resolution = 50  # pixels/um

sxy = 4
dpml = 1
cell = mp.Vector3(sxy+2*dpml,sxy+2*dpml)

pml_layers = [mp.PML(dpml)]

fcen = 1.0
df = 0.4
src_cmpt = mp.Ez
sources = [mp.Source(src=mp.GaussianSource(fcen,fwidth=df),
                    center=mp.Vector3(),
                    component=src_cmpt)]

if src_cmpt == mp.Ex:
    symmetries = [mp.Mirror(mp.X,phase=-1),
                  mp.Mirror(mp.Y,phase=+1)]
elif src_cmpt == mp.Ey:
    symmetries = [mp.Mirror(mp.X,phase=+1),
                  mp.Mirror(mp.Y,phase=-1)]
elif src_cmpt == mp.Ez:
    symmetries = [mp.Mirror(mp.X,phase=+1),
                  mp.Mirror(mp.Y,phase=+1)]

sim = mp.Simulation(cell_size=cell,
                    resolution=resolution,
                    sources=sources,
                    symmetries=symmetries,
                    boundary_layers=pml_layers)

nearfield_box = sim.add_near2far(fcen, 0, 1,
                                 mp.Near2FarRegion(center=mp.Vector3(0,+0.5*sxy), size=mp.Vector3(sxy,0), weight=+1),
                                 mp.Near2FarRegion(center=mp.Vector3(0,-0.5*sxy), size=mp.Vector3(sxy,0), weight=-1),
                                 mp.Near2FarRegion(center=mp.Vector3(+0.5*sxy,0), size=mp.Vector3(0,sxy), weight=+1),
                                 mp.Near2FarRegion(center=mp.Vector3(-0.5*sxy,0), size=mp.Vector3(0,sxy), weight=-1))

flux_box = sim.add_flux(fcen, 0, 1,
                        mp.FluxRegion(center=mp.Vector3(0,+0.5*sxy), size=mp.Vector3(sxy,0), weight=+1),
                        mp.FluxRegion(center=mp.Vector3(0,-0.5*sxy), size=mp.Vector3(sxy,0), weight=-1),
                        mp.FluxRegion(center=mp.Vector3(+0.5*sxy,0), size=mp.Vector3(0,sxy), weight=+1),
                        mp.FluxRegion(center=mp.Vector3(-0.5*sxy,0), size=mp.Vector3(0,sxy), weight=-1))

sim.run(until_after_sources=mp.stop_when_fields_decayed(50, src_cmpt, mp.Vector3(), 1e-8))

near_flux = mp.get_fluxes(flux_box)[0]

r = 1000/fcen      # half side length of far-field square box OR radius of far-field circle
res_ff = 1         # resolution of far fields (points/μm)
far_flux_box = (nearfield_box.flux(mp.Y, mp.Volume(center=mp.Vector3(y=r), size=mp.Vector3(2*r)), res_ff)[0]
               - nearfield_box.flux(mp.Y, mp.Volume(center=mp.Vector3(y=-r), size=mp.Vector3(2*r)), res_ff)[0]
               + nearfield_box.flux(mp.X, mp.Volume(center=mp.Vector3(r), size=mp.Vector3(y=2*r)), res_ff)[0]
               - nearfield_box.flux(mp.X, mp.Volume(center=mp.Vector3(-r), size=mp.Vector3(y=2*r)), res_ff)[0])

npts = 100         # number of points in [0,2*pi) range of angles
angles = 2*math.pi/npts*np.arange(npts)

E = np.zeros((npts,3),dtype=np.complex128)
H = np.zeros((npts,3),dtype=np.complex128)
for n in range(npts):
    ff = sim.get_farfield(nearfield_box,
                          mp.Vector3(r*math.cos(angles[n]),
                                     r*math.sin(angles[n])))
    E[n,:] = [np.conj(ff[j]) for j in range(3)]
    H[n,:] = [ff[j+3] for j in range(3)]

Px = np.real(E[:,1]*H[:,2]-E[:,2]*H[:,1])
Py = np.real(E[:,2]*H[:,0]-E[:,0]*H[:,2])
Pr = np.sqrt(np.square(Px)+np.square(Py))

far_flux_circle = np.sum(Pr)*2*np.pi*r/len(Pr)

print("flux:, {:.6f}, {:.6f}, {:.6f}".format(near_flux,far_flux_box,far_flux_circle))

ax = plt.subplot(111, projection='polar')
ax.plot(angles,Pr/max(Pr),'b-')
ax.set_rmax(1)
ax.set_rticks([0,0.5,1])
ax.grid(True)
ax.set_rlabel_position(22)
plt.show()