1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
from __future__ import division
import meep as mp
import math
import numpy as np
import matplotlib.pyplot as plt
resolution = 50 # pixels/um
sxy = 4
dpml = 1
cell = mp.Vector3(sxy+2*dpml,sxy+2*dpml)
pml_layers = [mp.PML(dpml)]
fcen = 1.0
df = 0.4
src_cmpt = mp.Ez
sources = [mp.Source(src=mp.GaussianSource(fcen,fwidth=df),
center=mp.Vector3(),
component=src_cmpt)]
if src_cmpt == mp.Ex:
symmetries = [mp.Mirror(mp.X,phase=-1),
mp.Mirror(mp.Y,phase=+1)]
elif src_cmpt == mp.Ey:
symmetries = [mp.Mirror(mp.X,phase=+1),
mp.Mirror(mp.Y,phase=-1)]
elif src_cmpt == mp.Ez:
symmetries = [mp.Mirror(mp.X,phase=+1),
mp.Mirror(mp.Y,phase=+1)]
sim = mp.Simulation(cell_size=cell,
resolution=resolution,
sources=sources,
symmetries=symmetries,
boundary_layers=pml_layers)
nearfield_box = sim.add_near2far(fcen, 0, 1,
mp.Near2FarRegion(center=mp.Vector3(0,+0.5*sxy), size=mp.Vector3(sxy,0), weight=+1),
mp.Near2FarRegion(center=mp.Vector3(0,-0.5*sxy), size=mp.Vector3(sxy,0), weight=-1),
mp.Near2FarRegion(center=mp.Vector3(+0.5*sxy,0), size=mp.Vector3(0,sxy), weight=+1),
mp.Near2FarRegion(center=mp.Vector3(-0.5*sxy,0), size=mp.Vector3(0,sxy), weight=-1))
flux_box = sim.add_flux(fcen, 0, 1,
mp.FluxRegion(center=mp.Vector3(0,+0.5*sxy), size=mp.Vector3(sxy,0), weight=+1),
mp.FluxRegion(center=mp.Vector3(0,-0.5*sxy), size=mp.Vector3(sxy,0), weight=-1),
mp.FluxRegion(center=mp.Vector3(+0.5*sxy,0), size=mp.Vector3(0,sxy), weight=+1),
mp.FluxRegion(center=mp.Vector3(-0.5*sxy,0), size=mp.Vector3(0,sxy), weight=-1))
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, src_cmpt, mp.Vector3(), 1e-8))
near_flux = mp.get_fluxes(flux_box)[0]
r = 1000/fcen # half side length of far-field square box OR radius of far-field circle
res_ff = 1 # resolution of far fields (points/μm)
far_flux_box = (nearfield_box.flux(mp.Y, mp.Volume(center=mp.Vector3(y=r), size=mp.Vector3(2*r)), res_ff)[0]
- nearfield_box.flux(mp.Y, mp.Volume(center=mp.Vector3(y=-r), size=mp.Vector3(2*r)), res_ff)[0]
+ nearfield_box.flux(mp.X, mp.Volume(center=mp.Vector3(r), size=mp.Vector3(y=2*r)), res_ff)[0]
- nearfield_box.flux(mp.X, mp.Volume(center=mp.Vector3(-r), size=mp.Vector3(y=2*r)), res_ff)[0])
npts = 100 # number of points in [0,2*pi) range of angles
angles = 2*math.pi/npts*np.arange(npts)
E = np.zeros((npts,3),dtype=np.complex128)
H = np.zeros((npts,3),dtype=np.complex128)
for n in range(npts):
ff = sim.get_farfield(nearfield_box,
mp.Vector3(r*math.cos(angles[n]),
r*math.sin(angles[n])))
E[n,:] = [np.conj(ff[j]) for j in range(3)]
H[n,:] = [ff[j+3] for j in range(3)]
Px = np.real(E[:,1]*H[:,2]-E[:,2]*H[:,1])
Py = np.real(E[:,2]*H[:,0]-E[:,0]*H[:,2])
Pr = np.sqrt(np.square(Px)+np.square(Py))
far_flux_circle = np.sum(Pr)*2*np.pi*r/len(Pr)
print("flux:, {:.6f}, {:.6f}, {:.6f}".format(near_flux,far_flux_box,far_flux_circle))
ax = plt.subplot(111, projection='polar')
ax.plot(angles,Pr/max(Pr),'b-')
ax.set_rmax(1)
ax.set_rticks([0,0.5,1])
ax.grid(True)
ax.set_rlabel_position(22)
plt.show()
|