File: perturbation_theory_2d.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (144 lines) | stat: -rw-r--r-- 5,506 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import meep as mp
import numpy as np
import argparse


def main(args):
    if args.perpendicular:
        src_cmpt = mp.Hz
        fcen = 0.21         # pulse center frequency
    else:
        src_cmpt = mp.Ez
        fcen = 0.17         # pulse center frequency

    n = 3.4                 # index of waveguide
    w = 1                   # ring width
    r = 1                   # inner radius of ring
    pad = 4                 # padding between waveguide and edge of PML
    dpml = 2                # thickness of PML

    pml_layers = [mp.PML(dpml)]

    sxy = 2*(r+w+pad+dpml)
    cell_size = mp.Vector3(sxy,sxy)

    symmetries = [mp.Mirror(mp.X,phase=+1 if args.perpendicular else -1),
                  mp.Mirror(mp.Y,phase=-1 if args.perpendicular else +1)]

    geometry = [mp.Cylinder(material=mp.Medium(index=n),
                            radius=r+w,
                            height=mp.inf,
                            center=mp.Vector3()),
                mp.Cylinder(material=mp.vacuum,
                            radius=r,
                            height=mp.inf,
                            center=mp.Vector3())]

    # find resonant frequency of unperturbed geometry using broadband source

    df = 0.2*fcen            # pulse width (in frequency)

    sources = [mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(r+0.1)),
               mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(-(r+0.1)),
                         amplitude=-1)]

    sim = mp.Simulation(cell_size=cell_size,
                        geometry=geometry,
                        boundary_layers=pml_layers,
                        resolution=args.res,
                        sources=sources,
                        symmetries=symmetries)

    h = mp.Harminv(src_cmpt, mp.Vector3(r+0.1), fcen, df)
    sim.run(mp.after_sources(h),
            until_after_sources=100)

    frq_unperturbed = h.modes[0].freq

    sim.reset_meep()

    # unperturbed geometry with narrowband source centered at resonant frequency

    fcen = frq_unperturbed
    df = 0.05*fcen

    sources = [mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(r+0.1)),
               mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(-(r+0.1)),
                         amplitude=-1)]

    sim = mp.Simulation(cell_size=cell_size,
                        geometry=geometry,
                        boundary_layers=pml_layers,
                        resolution=args.res,
                        sources=sources,
                        symmetries=symmetries)

    sim.run(until_after_sources=100)

    deps = 1 - n**2
    deps_inv = 1 - 1/n**2

    if args.perpendicular:
        para_integral = deps*2*np.pi*(r*abs(sim.get_field_point(mp.Ey, mp.Vector3(r)))**2 - (r+w)*abs(sim.get_field_point(mp.Ey, mp.Vector3(r+w)))**2)
        perp_integral = deps_inv*2*np.pi*(-r*abs(sim.get_field_point(mp.Dy, mp.Vector3(y=r)))**2 + (r+w)*abs(sim.get_field_point(mp.Dy, mp.Vector3(y=r+w)))**2)
        numerator_integral = para_integral + perp_integral
    else:
        numerator_integral = deps*2*np.pi*(r*abs(sim.get_field_point(mp.Ez, mp.Vector3(r)))**2 - (r+w)*abs(sim.get_field_point(mp.Ez, mp.Vector3(r+w)))**2)

    denominator_integral = sim.electric_energy_in_box(center=mp.Vector3(), size=mp.Vector3(sxy-2*dpml,sxy-2*dpml))
    perturb_theory_dw_dR = -frq_unperturbed * numerator_integral / (8 * denominator_integral)

    # perturbed geometry with narrowband source

    dr = 0.04

    sim.reset_meep()

    sources = [mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(r+dr+0.1)),
               mp.Source(mp.GaussianSource(fcen, fwidth=df),
                         component=src_cmpt,
                         center=mp.Vector3(-(r+dr+0.1)),
                         amplitude=-1)]

    geometry = [mp.Cylinder(material=mp.Medium(index=n),
                            radius=r+dr+w,
                            height=mp.inf,
                            center=mp.Vector3()),
                mp.Cylinder(material=mp.vacuum,
                            radius=r+dr,
                            height=mp.inf,
                            center=mp.Vector3())]

    sim = mp.Simulation(cell_size=cell_size,
                        geometry=geometry,
                        boundary_layers=pml_layers,
                        resolution=args.res,
                        sources=sources,
                        symmetries=symmetries)

    h = mp.Harminv(src_cmpt, mp.Vector3(r+dr+0.1), fcen, df)
    sim.run(mp.after_sources(h),
            until_after_sources=100)

    frq_perturbed = h.modes[0].freq

    finite_diff_dw_dR = (frq_perturbed - frq_unperturbed) / dr

    print("dwdR:, {} (pert. theory), {} (finite diff.)".format(perturb_theory_dw_dR,finite_diff_dw_dR))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-perpendicular', action='store_true', help='use perpendicular field source (default: parallel field source)')
    parser.add_argument('-res', type=int, default=30, help='resolution (default: 30 pixels/um)')
    args = parser.parse_args()
    main(args)