File: polarization_grating.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (163 lines) | stat: -rw-r--r-- 6,392 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-

# polarization grating from C. Oh and M.J. Escuti, Optics Letters, Vol. 33, No. 20, pp. 2287-9, 2008
# note: reference uses z as the propagation direction and y as the out-of-plane direction; this script uses x and z, respectively

import meep as mp
import numpy as np
import math
import matplotlib.pyplot as plt

resolution = 50        # pixels/μm

dpml = 1.0             # PML thickness
dsub = 1.0             # substrate thickness
dpad = 1.0             # padding thickness

k_point = mp.Vector3(0,0,0)

pml_layers = [mp.PML(thickness=dpml,direction=mp.X)]

n_0 = 1.55
delta_n = 0.159
epsilon_diag = mp.Matrix(mp.Vector3(n_0**2,0,0),mp.Vector3(0,n_0**2,0),mp.Vector3(0,0,(n_0+delta_n)**2))

wvl = 0.54             # center wavelength
fcen = 1/wvl           # center frequency

def pol_grating(d,ph,gp,nmode):
    sx = dpml+dsub+d+d+dpad+dpml
    sy = gp

    cell_size = mp.Vector3(sx,sy,0)

    # twist angle of nematic director; from equation 1b
    def phi(p):
        xx  = p.x-(-0.5*sx+dpml+dsub)
        if (xx >= 0) and (xx <= d):
            return math.pi*p.y/gp + ph*xx/d
        else:
            return math.pi*p.y/gp - ph*xx/d + 2*ph

    # return the anisotropic permittivity tensor for a uniaxial, twisted nematic liquid crystal
    def lc_mat(p):
        # rotation matrix for rotation around x axis
        Rx = mp.Matrix(mp.Vector3(1,0,0),mp.Vector3(0,math.cos(phi(p)),math.sin(phi(p))),mp.Vector3(0,-math.sin(phi(p)),math.cos(phi(p))))
        lc_epsilon = Rx * epsilon_diag * Rx.transpose()
        lc_epsilon_diag = mp.Vector3(lc_epsilon[0].x,lc_epsilon[1].y,lc_epsilon[2].z)
        lc_epsilon_offdiag = mp.Vector3(lc_epsilon[1].x,lc_epsilon[2].x,lc_epsilon[2].y)
        return mp.Medium(epsilon_diag=lc_epsilon_diag,epsilon_offdiag=lc_epsilon_offdiag)

    geometry = [mp.Block(center=mp.Vector3(-0.5*sx+0.5*(dpml+dsub)),size=mp.Vector3(dpml+dsub,mp.inf,mp.inf),material=mp.Medium(index=n_0)),
                mp.Block(center=mp.Vector3(-0.5*sx+dpml+dsub+d),size=mp.Vector3(2*d,mp.inf,mp.inf),material=lc_mat)]

    # linear-polarized planewave pulse source
    src_pt = mp.Vector3(-0.5*sx+dpml+0.3*dsub,0,0)
    sources = [mp.Source(mp.GaussianSource(fcen,fwidth=0.05*fcen), component=mp.Ez, center=src_pt, size=mp.Vector3(0,sy,0)),
               mp.Source(mp.GaussianSource(fcen,fwidth=0.05*fcen), component=mp.Ey, center=src_pt, size=mp.Vector3(0,sy,0))]

    sim = mp.Simulation(resolution=resolution,
                        cell_size=cell_size,
                        boundary_layers=pml_layers,
                        k_point=k_point,
                        sources=sources,
                        default_material=mp.Medium(index=n_0))

    tran_pt = mp.Vector3(0.5*sx-dpml-0.5*dpad,0,0)
    tran_flux = sim.add_flux(fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0,sy,0)))

    sim.run(until_after_sources=100)

    input_flux = mp.get_fluxes(tran_flux)

    sim.reset_meep()

    sim = mp.Simulation(resolution=resolution,
                        cell_size=cell_size,
                        boundary_layers=pml_layers,
                        k_point=k_point,
                        sources=sources,
                        geometry=geometry)

    tran_flux = sim.add_flux(fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0,sy,0)))

    sim.run(until_after_sources=300)

    res1 = sim.get_eigenmode_coefficients(tran_flux, range(1,nmode+1), eig_parity=mp.ODD_Z+mp.EVEN_Y)
    res2 = sim.get_eigenmode_coefficients(tran_flux, range(1,nmode+1), eig_parity=mp.EVEN_Z+mp.ODD_Y)
    angles = [math.degrees(math.acos(kdom.x/fcen)) for kdom in res1.kdom]

    return input_flux[0], angles, res1.alpha[:,0,0], res2.alpha[:,0,0];



ph_uniaxial = 0               # chiral layer twist angle for uniaxial grating
ph_twisted = 70               # chiral layer twist angle for bilayer grating
gp = 6.5                      # grating period
nmode = 5                     # number of mode coefficients to compute
dd = np.arange(0.1,3.5,0.1)   # chiral layer thickness

m0_uniaxial = np.zeros(dd.size)
m1_uniaxial = np.zeros(dd.size)
ang_uniaxial = np.zeros(dd.size)

m0_twisted = np.zeros(dd.size)
m1_twisted = np.zeros(dd.size)
ang_twisted = np.zeros(dd.size)

for k in range(len(dd)):
    input_flux, angles, coeffs1, coeffs2 = pol_grating(0.5*dd[k],math.radians(ph_uniaxial),gp,nmode)
    tran = (abs(coeffs1)**2+abs(coeffs2)**2)/input_flux
    for m in range(nmode):
        print("tran (uniaxial):, {}, {:.2f}, {:.5f}".format(m,angles[m],tran[m]))
    m0_uniaxial[k] = tran[0]
    m1_uniaxial[k] = tran[1]
    ang_uniaxial[k] = angles[1]

    input_flux, angles, coeffs1, coeffs2 = pol_grating(dd[k],math.radians(ph_twisted),gp,nmode)
    tran = (abs(coeffs1)**2+abs(coeffs2)**2)/input_flux
    for m in range(nmode):
        print("tran (twisted):, {}, {:.2f}, {:.5f}".format(m,angles[m],tran[m]))
    m0_twisted[k] = tran[0]
    m1_twisted[k] = tran[1]
    ang_twisted[k] = angles[1]


cos_angles = [math.cos(math.radians(t)) for t in ang_uniaxial]
tran = m0_uniaxial+2*m1_uniaxial
eff_m0 = m0_uniaxial/tran
eff_m1 = (2*m1_uniaxial/tran)/cos_angles

phase = delta_n*dd/wvl
eff_m0_analytic = [math.cos(math.pi*p)**2 for p in phase]
eff_m1_analytic = [math.sin(math.pi*p)**2 for p in phase]

plt.figure(dpi=150)
plt.subplot(1,2,1)
plt.plot(phase,eff_m0,'bo-',clip_on=False,label='0th order (meep)')
plt.plot(phase,eff_m0_analytic,'b--',clip_on=False,label='0th order (analytic)')
plt.plot(phase,eff_m1,'ro-',clip_on=False,label='±1 orders (meep)')
plt.plot(phase,eff_m1_analytic,'r--',clip_on=False,label='±1 orders (analytic)')
plt.axis([0, 1.0, 0, 1])
plt.xticks([t for t in np.arange(0,1.2,0.2)])
plt.xlabel("phase delay Δnd/λ")
plt.ylabel("diffraction efficiency @ λ = 0.54 μm")
plt.legend(loc='center')
plt.title("homogeneous uniaxial grating")

cos_angles = [math.cos(math.radians(t)) for t in ang_twisted]
tran = m0_twisted+2*m1_twisted
eff_m0 = m0_twisted/tran
eff_m1 = (2*m1_twisted/tran)/cos_angles

plt.subplot(1,2,2)
plt.plot(phase,eff_m0,'bo-',clip_on=False,label='0th order (meep)')
plt.plot(phase,eff_m1,'ro-',clip_on=False,label='±1 orders (meep)')
plt.axis([0, 1.0, 0, 1])
plt.xticks([t for t in np.arange(0,1.2,0.2)])
plt.xlabel("phase delay Δnd/λ")
plt.ylabel("diffraction efficiency @ λ = 0.54 μm")
plt.legend(loc='center')
plt.title("bilayer twisted-nematic grating")

plt.show()