File: mode_coeffs.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (138 lines) | stat: -rw-r--r-- 5,731 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from __future__ import division

import unittest
import numpy as np
import meep as mp


class TestModeCoeffs(unittest.TestCase):

    def run_mode_coeffs(self, mode_num, kpoint_func, nf=1, resolution=15):

        w = 1   # width of waveguide
        L = 10  # length of waveguide

        Si = mp.Medium(epsilon=12.0)

        dair = 3.0
        dpml = 3.0

        sx = dpml + L + dpml
        sy = dpml + dair + w + dair + dpml
        cell_size = mp.Vector3(sx, sy, 0)

        prism_x = sx + 1
        prism_y = w / 2
        vertices = [mp.Vector3(-prism_x, prism_y),
                    mp.Vector3(prism_x, prism_y),
                    mp.Vector3(prism_x, -prism_y),
                    mp.Vector3(-prism_x, -prism_y)]

        geometry = [mp.Prism(vertices, height=mp.inf, material=Si)]

        boundary_layers = [mp.PML(dpml)]

        # mode frequency
        fcen = 0.20  # > 0.5/sqrt(11) to have at least 2 modes
        df   = 0.5*fcen

        source=mp.EigenModeSource(src=mp.GaussianSource(fcen, fwidth=df),
                                  eig_band=mode_num,
                                  size=mp.Vector3(0,sy-2*dpml,0),
                                  center=mp.Vector3(-0.5*sx+dpml,0,0),
                                  eig_match_freq=True,
                                  eig_resolution=2*resolution)

        sim = mp.Simulation(resolution=resolution,
                            cell_size=cell_size,
                            boundary_layers=boundary_layers,
                            geometry=geometry,
                            sources=[source],
                            symmetries=[mp.Mirror(mp.Y, phase=1 if mode_num % 2 == 1 else -1)])

        xm = 0.5*sx - dpml  # x-coordinate of monitor
        mflux = sim.add_mode_monitor(fcen, df, nf, mp.ModeRegion(center=mp.Vector3(xm,0), size=mp.Vector3(0,sy-2*dpml)))
        mode_flux = sim.add_flux(fcen, df, nf, mp.FluxRegion(center=mp.Vector3(xm,0), size=mp.Vector3(0,sy-2*dpml)))

        # sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mp.Vector3(-0.5*sx+dpml,0), 1e-10))
        sim.run(until_after_sources=100)

        ##################################################
        # If the number of analysis frequencies is >1, we
        # are testing the unit-power normalization
        # of the eigenmode source: we observe the total
        # power flux through the mode_flux monitor (which
        # equals the total power emitted by the source as
        # there is no scattering in this ideal waveguide)
        # and check that it agrees with the prediction
        # of the eig_power() class method in EigenmodeSource.
        ##################################################
        if nf>1:
            power_observed=mp.get_fluxes(mode_flux)
            freqs=mp.get_flux_freqs(mode_flux)
            power_expected=[source.eig_power(f) for f in freqs]
            return freqs, power_expected, power_observed

        modes_to_check = [1, 2]  # indices of modes for which to compute expansion coefficients
        res = sim.get_eigenmode_coefficients(mflux, modes_to_check, kpoint_func=kpoint_func)

        self.assertTrue(res.kpoints[0].close(mp.Vector3(0.604301, 0, 0)))
        self.assertTrue(res.kpoints[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
        self.assertTrue(res.kdom[0].close(mp.Vector3(0.604301, 0, 0)))
        self.assertTrue(res.kdom[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
        self.assertAlmostEqual(res.cscale[0],0.50000977,places=5)
        self.assertAlmostEqual(res.cscale[1],0.50096888,places=5)
        mode_power = mp.get_fluxes(mode_flux)[0]

        TestPassed = True
        TOLERANCE = 5.0e-3
        c0 = res.alpha[mode_num - 1, 0, 0] # coefficient of forward-traveling wave for mode #mode_num
        for nm in range(1, len(modes_to_check)+1):
            if nm != mode_num:
                cfrel = np.abs(res.alpha[nm - 1, 0, 0]) / np.abs(c0)
                cbrel = np.abs(res.alpha[nm - 1, 0, 1]) / np.abs(c0)
                if cfrel > TOLERANCE or cbrel > TOLERANCE:
                    TestPassed = False

        self.sim = sim

        # test 1: coefficient of excited mode >> coeffs of all other modes
        self.assertTrue(TestPassed, msg="cfrel: {}, cbrel: {}".format(cfrel, cbrel))
        # test 2: |mode coeff|^2 = power
        self.assertAlmostEqual(mode_power / abs(c0**2), 1.0, places=1)

        return res

    def test_modes(self):
        self.run_mode_coeffs(1, None)
        res = self.run_mode_coeffs(2, None)

        # Test mp.get_eigenmode and EigenmodeData
        vol = mp.Volume(center=mp.Vector3(5), size=mp.Vector3(y=7))
        emdata = self.sim.get_eigenmode(0.2, mp.X, vol, 2, mp.Vector3())
        self.assertEqual(emdata.freq, 0.2)
        self.assertEqual(emdata.band_num, 2)
        self.assertTrue(emdata.kdom.close(res.kdom[1]))

        eval_point = mp.Vector3(0.7, -0.2, 0.3)
        ex_at_eval_point = emdata.amplitude(eval_point, mp.Ex)
        hz_at_eval_point = emdata.amplitude(eval_point, mp.Hz)
        self.assertAlmostEqual(ex_at_eval_point, 0.4887779638178009+0.48424014532428294j)
        self.assertAlmostEqual(hz_at_eval_point, 3.4249236584603495-3.455974863884166j)

    def test_kpoint_func(self):

        def kpoint_func(freq, mode):
            return mp.Vector3()

        self.run_mode_coeffs(1, kpoint_func)

    def test_eigensource_normalization(self):
        f, p_exp, p_obs=self.run_mode_coeffs(1, None, nf=51, resolution=15)
        #self.assertAlmostEqual(max(p_exp),max(p_obs),places=1)
        max_exp, max_obs=max(p_exp), max(p_obs)
        self.assertLess(abs(max_exp-max_obs), 0.5*max(abs(max_exp),abs(max_obs)))


if __name__ == '__main__':
    unittest.main()