1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
from __future__ import division
import unittest
import numpy as np
import meep as mp
class TestModeCoeffs(unittest.TestCase):
def run_mode_coeffs(self, mode_num, kpoint_func, nf=1, resolution=15):
w = 1 # width of waveguide
L = 10 # length of waveguide
Si = mp.Medium(epsilon=12.0)
dair = 3.0
dpml = 3.0
sx = dpml + L + dpml
sy = dpml + dair + w + dair + dpml
cell_size = mp.Vector3(sx, sy, 0)
prism_x = sx + 1
prism_y = w / 2
vertices = [mp.Vector3(-prism_x, prism_y),
mp.Vector3(prism_x, prism_y),
mp.Vector3(prism_x, -prism_y),
mp.Vector3(-prism_x, -prism_y)]
geometry = [mp.Prism(vertices, height=mp.inf, material=Si)]
boundary_layers = [mp.PML(dpml)]
# mode frequency
fcen = 0.20 # > 0.5/sqrt(11) to have at least 2 modes
df = 0.5*fcen
source=mp.EigenModeSource(src=mp.GaussianSource(fcen, fwidth=df),
eig_band=mode_num,
size=mp.Vector3(0,sy-2*dpml,0),
center=mp.Vector3(-0.5*sx+dpml,0,0),
eig_match_freq=True,
eig_resolution=2*resolution)
sim = mp.Simulation(resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
geometry=geometry,
sources=[source],
symmetries=[mp.Mirror(mp.Y, phase=1 if mode_num % 2 == 1 else -1)])
xm = 0.5*sx - dpml # x-coordinate of monitor
mflux = sim.add_mode_monitor(fcen, df, nf, mp.ModeRegion(center=mp.Vector3(xm,0), size=mp.Vector3(0,sy-2*dpml)))
mode_flux = sim.add_flux(fcen, df, nf, mp.FluxRegion(center=mp.Vector3(xm,0), size=mp.Vector3(0,sy-2*dpml)))
# sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mp.Vector3(-0.5*sx+dpml,0), 1e-10))
sim.run(until_after_sources=100)
##################################################
# If the number of analysis frequencies is >1, we
# are testing the unit-power normalization
# of the eigenmode source: we observe the total
# power flux through the mode_flux monitor (which
# equals the total power emitted by the source as
# there is no scattering in this ideal waveguide)
# and check that it agrees with the prediction
# of the eig_power() class method in EigenmodeSource.
##################################################
if nf>1:
power_observed=mp.get_fluxes(mode_flux)
freqs=mp.get_flux_freqs(mode_flux)
power_expected=[source.eig_power(f) for f in freqs]
return freqs, power_expected, power_observed
modes_to_check = [1, 2] # indices of modes for which to compute expansion coefficients
res = sim.get_eigenmode_coefficients(mflux, modes_to_check, kpoint_func=kpoint_func)
self.assertTrue(res.kpoints[0].close(mp.Vector3(0.604301, 0, 0)))
self.assertTrue(res.kpoints[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
self.assertTrue(res.kdom[0].close(mp.Vector3(0.604301, 0, 0)))
self.assertTrue(res.kdom[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
self.assertAlmostEqual(res.cscale[0],0.50000977,places=5)
self.assertAlmostEqual(res.cscale[1],0.50096888,places=5)
mode_power = mp.get_fluxes(mode_flux)[0]
TestPassed = True
TOLERANCE = 5.0e-3
c0 = res.alpha[mode_num - 1, 0, 0] # coefficient of forward-traveling wave for mode #mode_num
for nm in range(1, len(modes_to_check)+1):
if nm != mode_num:
cfrel = np.abs(res.alpha[nm - 1, 0, 0]) / np.abs(c0)
cbrel = np.abs(res.alpha[nm - 1, 0, 1]) / np.abs(c0)
if cfrel > TOLERANCE or cbrel > TOLERANCE:
TestPassed = False
self.sim = sim
# test 1: coefficient of excited mode >> coeffs of all other modes
self.assertTrue(TestPassed, msg="cfrel: {}, cbrel: {}".format(cfrel, cbrel))
# test 2: |mode coeff|^2 = power
self.assertAlmostEqual(mode_power / abs(c0**2), 1.0, places=1)
return res
def test_modes(self):
self.run_mode_coeffs(1, None)
res = self.run_mode_coeffs(2, None)
# Test mp.get_eigenmode and EigenmodeData
vol = mp.Volume(center=mp.Vector3(5), size=mp.Vector3(y=7))
emdata = self.sim.get_eigenmode(0.2, mp.X, vol, 2, mp.Vector3())
self.assertEqual(emdata.freq, 0.2)
self.assertEqual(emdata.band_num, 2)
self.assertTrue(emdata.kdom.close(res.kdom[1]))
eval_point = mp.Vector3(0.7, -0.2, 0.3)
ex_at_eval_point = emdata.amplitude(eval_point, mp.Ex)
hz_at_eval_point = emdata.amplitude(eval_point, mp.Hz)
self.assertAlmostEqual(ex_at_eval_point, 0.4887779638178009+0.48424014532428294j)
self.assertAlmostEqual(hz_at_eval_point, 3.4249236584603495-3.455974863884166j)
def test_kpoint_func(self):
def kpoint_func(freq, mode):
return mp.Vector3()
self.run_mode_coeffs(1, kpoint_func)
def test_eigensource_normalization(self):
f, p_exp, p_obs=self.run_mode_coeffs(1, None, nf=51, resolution=15)
#self.assertAlmostEqual(max(p_exp),max(p_obs),places=1)
max_exp, max_obs=max(p_exp), max(p_obs)
self.assertLess(abs(max_exp-max_obs), 0.5*max(abs(max_exp),abs(max_obs)))
if __name__ == '__main__':
unittest.main()
|