File: source.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (227 lines) | stat: -rw-r--r-- 7,400 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import division

import math
import os
import unittest
import numpy as np

import meep as mp
from meep.geom import Cylinder, Vector3
from meep.source import EigenModeSource, ContinuousSource, GaussianSource


data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data'))


class TestEigenModeSource(unittest.TestCase):

    def test_eig_lattice_defaults(self):
        src = ContinuousSource(5.0)
        center = Vector3()

        default_lattice = EigenModeSource(src, center)
        self.assertEqual(default_lattice.eig_lattice_size, Vector3())
        self.assertEqual(default_lattice.eig_lattice_center, Vector3())

        elc = Vector3(1, 1, 1)
        els = Vector3(1, 1, 1)
        custom_lattice = EigenModeSource(src, center, eig_lattice_center=elc, eig_lattice_size=els)
        self.assertEqual(custom_lattice.eig_lattice_size, els)
        self.assertEqual(custom_lattice.eig_lattice_center, elc)


class TestSourceTime(unittest.TestCase):

    def test_source_wavelength(self):
        g_src = GaussianSource(wavelength=10)
        c_src = ContinuousSource(wavelength=10)

        self.assertAlmostEqual(1. / 10., g_src.frequency)
        self.assertAlmostEqual(1. / 10., c_src.frequency)

    def test_source_frequency(self):
        g_src = GaussianSource(10)
        c_src = ContinuousSource(10)

        self.assertEqual(10, g_src.frequency)
        self.assertEqual(10, c_src.frequency)

        with self.assertRaises(ValueError):
            GaussianSource()

        with self.assertRaises(ValueError):
            ContinuousSource()


class TestSourceTypemaps(unittest.TestCase):

    def setUp(self):

        def dummy_eps(v):
            return 1.0

        gv = mp.voltwo(16, 16, 10)
        gv.center_origin()
        sym = mp.mirror(mp.Y, gv)
        the_structure = mp.structure(gv, dummy_eps, mp.pml(2), sym)
        objects = []
        objects.append(Cylinder(1))
        mp.set_materials_from_geometry(the_structure, objects)
        self.f = mp.fields(the_structure)
        self.v = mp.volume(mp.vec(1.1, 0.0), mp.vec(0.0, 0.0))

    def test_typemap_swig(self):
        src = mp.gaussian_src_time(0.15, 0.1)
        self.f.add_volume_source(mp.Ez, src, self.v)

    def test_typemap_py(self):
        src = GaussianSource(0.15, 0.1)
        self.f.add_volume_source(mp.Ez, src, self.v)

    def test_custom_source(self):
        n = 3.4
        w = 1
        r = 1
        pad = 4
        dpml = 2
        sxy = 2 * (r + w + pad + dpml)

        cell = mp.Vector3(sxy, sxy)

        geometry = [
            mp.Cylinder(r + w, material=mp.Medium(index=n)),
            mp.Cylinder(r, material=mp.air)
        ]

        boundary_layers = [mp.PML(dpml)]
        resolution = 10
        fcen = 0.15
        df = 0.1

        # Bump function
        def my_src_func(t):
            if t > 0 and t < 2:
                return math.exp(-1 / (1 - ((t - 1)**2)))
            return 0j

        sources = [mp.Source(src=mp.CustomSource(src_func=my_src_func, end_time=100),
                             component=mp.Ez, center=mp.Vector3(r + 0.1))]

        symmetries = [mp.Mirror(mp.Y)]

        sim = mp.Simulation(cell_size=cell,
                            resolution=resolution,
                            geometry=geometry,
                            boundary_layers=boundary_layers,
                            sources=sources,
                            symmetries=symmetries)

        h = mp.Harminv(mp.Ez, mp.Vector3(r + 0.1), fcen, df)
        sim.run(mp.after_sources(h), until_after_sources=200)
        fp = sim.get_field_point(mp.Ez, mp.Vector3(1))

        self.assertAlmostEqual(fp, -0.021997617628500023 + 0j)


def amp_fun(p):
    return p.x + 2 * p.y


class TestAmpFileFunc(unittest.TestCase):

    def create_h5data(self):
        N = 100
        M = 200

        self.amp_data = np.zeros((N, M, 1), dtype=np.complex128)

        for i in range(N):
            for j in range(M):
                v = mp.Vector3((i / N) * 0.3 - 0.15, (j / M) * 0.2 - 0.1)
                self.amp_data[i, j] = amp_fun(v)

    def init_and_run(self, test_type):
        cell = mp.Vector3(1, 1)
        resolution = 60
        fcen = 0.8
        df = 0.02

        cen = mp.Vector3(0.1, 0.2)
        sz = mp.Vector3(0.3, 0.2)

        amp_file = os.path.join(data_dir, 'amp_func_file')
        amp_file += ':amp_data'

        if test_type == 'file':
            sources = [mp.Source(mp.ContinuousSource(fcen, fwidth=df), component=mp.Ez, center=cen,
                                 size=sz, amp_func_file=amp_file)]
        elif test_type == 'func':
            sources = [mp.Source(mp.ContinuousSource(fcen, fwidth=df), component=mp.Ez, center=cen,
                                 size=sz, amp_func=amp_fun)]
        elif test_type == 'arr':
            sources = [mp.Source(mp.ContinuousSource(fcen, fwidth=df), component=mp.Ez, center=cen,
                                 size=sz, amp_data=self.amp_data)]

        sim = mp.Simulation(cell_size=cell, resolution=resolution, sources=sources)
        sim.run(until=200)
        return sim.get_field_point(mp.Ez, mp.Vector3())

    def test_amp_file_func(self):
        self.create_h5data()
        field_point_amp_file = self.init_and_run(test_type='file')
        field_point_amp_func = self.init_and_run(test_type='func')
        field_point_amp_arr = self.init_and_run(test_type='arr')

        self.assertAlmostEqual(field_point_amp_file, field_point_amp_func, places=4)
        self.assertAlmostEqual(field_point_amp_arr, field_point_amp_func, places=4)

class TestCustomEigenModeSource(unittest.TestCase):

    def test_custom_em_source(self):
        resolution = 20

        dpml = 2
        pml_layers = [mp.PML(thickness=dpml)]

        sx = 40
        sy = 12
        cell_size = mp.Vector3(sx+2*dpml,sy)

        v0 = 0.15  # pulse center frequency
        a = 0.2*v0   # Gaussian envelope half-width
        b = -0.1  # linear chirp rate (positive: up-chirp, negative: down-chirp)
        t0 = 15   # peak time

        chirp = lambda t: np.exp(1j*2*np.pi*v0*(t-t0)) * np.exp(-a*(t-t0)**2+1j*b*(t-t0)**2)

        geometry = [mp.Block(center=mp.Vector3(0,0,0),size=mp.Vector3(mp.inf,1,mp.inf),material=mp.Medium(epsilon=12))]

        kx = 0.4    # initial guess for wavevector in x-direction of eigenmode
        kpoint = mp.Vector3(kx)
        bnum = 1

        sources = [mp.EigenModeSource(src=mp.CustomSource(src_func=chirp,center_frequency=v0),
                            center=mp.Vector3(-0.5*sx + dpml + 1),
                            size=mp.Vector3(y=sy),
                            eig_kpoint=kpoint,
                            eig_band=bnum,
                            eig_parity=mp.EVEN_Y+mp.ODD_Z,
                            eig_match_freq=True
                            )]

        sim = mp.Simulation(cell_size=cell_size,
                            boundary_layers=pml_layers,
                            resolution=resolution,
                            k_point=mp.Vector3(),
                            sources=sources,
                            geometry=geometry,
                            symmetries=[mp.Mirror(mp.Y)])

        t = np.linspace(0,50,1000)
        sim.run(until=t0+50)

        # For now, just check to make sure the simulation can run and the fields don't blow up.


if __name__ == '__main__':
    unittest.main()