File: special_kz.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (155 lines) | stat: -rw-r--r-- 5,687 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import division

import unittest
import meep as mp
import cmath
import math
from time import time

class TestSpecialKz(unittest.TestCase):

    def refl_planar(self, theta, kz_2d):
        resolution = 100  # pixels/um

        dpml = 1.0
        sx = 3+2*dpml
        sy = 1/resolution
        cell_size = mp.Vector3(sx,sy)
        pml_layers = [mp.PML(dpml,direction=mp.X)]

        fcen = 1.0 # source wavelength = 1 um

        k_point = mp.Vector3(z=math.sin(theta)).scale(fcen)

        sources = [mp.Source(mp.GaussianSource(fcen,fwidth=0.2*fcen),
                             component=mp.Ez,
                             center=mp.Vector3(-0.5*sx+dpml),
                             size=mp.Vector3(y=sy))]

        sim = mp.Simulation(cell_size=cell_size,
                            boundary_layers=pml_layers,
                            sources=sources,
                            k_point=k_point,
                            kz_2d=kz_2d,
                            resolution=resolution)

        refl_fr = mp.FluxRegion(center=mp.Vector3(-0.25*sx),
                                size=mp.Vector3(y=sy))
        refl = sim.add_flux(fcen,0,1,refl_fr)

        sim.run(until_after_sources=mp.stop_when_fields_decayed(50,mp.Ez,mp.Vector3(),1e-9))

        empty_flux = mp.get_fluxes(refl)
        empty_data = sim.get_flux_data(refl)
        sim.reset_meep()

        geometry = [mp.Block(material=mp.Medium(index=3.5),
                             size=mp.Vector3(0.5*sx,mp.inf,mp.inf),
                             center=mp.Vector3(0.25*sx))]

        sim = mp.Simulation(cell_size=cell_size,
                            boundary_layers=pml_layers,
                            geometry=geometry,
                            sources=sources,
                            k_point=k_point,
                            kz_2d=kz_2d,
                            resolution=resolution)

        refl = sim.add_flux(fcen,0,1,refl_fr)
        sim.load_minus_flux_data(refl,empty_data)

        sim.run(until_after_sources=mp.stop_when_fields_decayed(50,mp.Ez,mp.Vector3(),1e-9))

        refl_flux = mp.get_fluxes(refl)

        Rmeep = -refl_flux[0]/empty_flux[0]
        return Rmeep

    def test_special_kz(self):
        n1 = 1
        n2 = 3.5

        # compute angle of refracted planewave in medium n2
        # for incident planewave in medium n1 at angle theta_in
        theta_out = lambda theta_in: math.asin(n1*math.sin(theta_in)/n2)

        # compute Fresnel reflectance for P-polarization in medium n2
        # for incident planewave in medium n1 at angle theta_in
        Rfresnel = lambda theta_in: math.fabs((n1*math.cos(theta_out(theta_in))-n2*math.cos(theta_in))/(n1*math.cos(theta_out(theta_in))+n2*math.cos(theta_in)))**2

        theta = math.radians(23)

        start = time()
        Rmeep_complex = self.refl_planar(theta, 'complex')
        t_complex = time() - start

        start = time()
        Rmeep_real_imag = self.refl_planar(theta, 'real/imag')
        t_real_imag = time() - start

        Rfres = Rfresnel(theta)

        self.assertAlmostEqual(Rmeep_complex,Rfres,places=2)
        self.assertAlmostEqual(Rmeep_real_imag,Rfres,places=2)
        self.assertLess(t_real_imag,t_complex)


    def eigsrc_kz(self, kz_2d):
        print(kz_2d)
        resolution = 30 # pixels/um
        cell_size = mp.Vector3(14,14)
        pml_layers = [mp.PML(thickness=2)]

        geometry = [mp.Block(center=mp.Vector3(),
                             size=mp.Vector3(mp.inf,1,mp.inf),
                             material=mp.Medium(epsilon=12))]

        fsrc = 0.3  # frequency of eigenmode or constant-amplitude source
        bnum = 1    # band number of eigenmode
        kz = 0.2    # fixed out-of-plane wavevector component

        sources = [mp.EigenModeSource(src=mp.GaussianSource(fsrc,fwidth=0.2*fsrc),
                                      center=mp.Vector3(),
                                      size=mp.Vector3(y=14),
                                      eig_band=bnum,
                                      eig_parity=mp.EVEN_Y,
                                      eig_match_freq=True)]

        sim = mp.Simulation(cell_size=cell_size,
                            resolution=resolution,
                            boundary_layers=pml_layers,
                            sources=sources,
                            geometry=geometry,
                            symmetries=[mp.Mirror(mp.Y)],
                            k_point=mp.Vector3(z=kz),
                            kz_2d=kz_2d)

        tran = sim.add_flux(fsrc, 0, 1, mp.FluxRegion(center=mp.Vector3(x=5), size=mp.Vector3(y=14)))
        sim.run(until_after_sources=50)
        res = sim.get_eigenmode_coefficients(tran,
                                             [1,2],
                                             eig_parity=mp.EVEN_Y)

        total_flux = mp.get_fluxes(tran)[0]
        mode1_flux = abs(res.alpha[0,0,0])**2
        mode2_flux = abs(res.alpha[1,0,0])**2

        mode1_frac = 0.99
        self.assertGreater(mode1_flux/total_flux, mode1_frac)
        self.assertLess(mode2_flux/total_flux, 1-mode1_frac)

        d = 3.5
        ez1 = sim.get_field_point(mp.Ez, mp.Vector3(2.3,-5.7,4.8))
        ez2 = sim.get_field_point(mp.Ez, mp.Vector3(2.3,-5.7,4.8+d))
        ratio_ez = ez2/ez1
        phase_diff = cmath.exp(1j*2*cmath.pi*kz*d)
        self.assertAlmostEqual(ratio_ez.real,phase_diff.real,places=10)
        self.assertAlmostEqual(ratio_ez.imag,phase_diff.imag,places=10)

    def test_eigsrc_kz(self):
        self.eigsrc_kz("complex")
        self.eigsrc_kz("real/imag")


if __name__ == '__main__':
    unittest.main()