1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
from __future__ import division
import unittest
import meep as mp
import cmath
import math
from time import time
class TestSpecialKz(unittest.TestCase):
def refl_planar(self, theta, kz_2d):
resolution = 100 # pixels/um
dpml = 1.0
sx = 3+2*dpml
sy = 1/resolution
cell_size = mp.Vector3(sx,sy)
pml_layers = [mp.PML(dpml,direction=mp.X)]
fcen = 1.0 # source wavelength = 1 um
k_point = mp.Vector3(z=math.sin(theta)).scale(fcen)
sources = [mp.Source(mp.GaussianSource(fcen,fwidth=0.2*fcen),
component=mp.Ez,
center=mp.Vector3(-0.5*sx+dpml),
size=mp.Vector3(y=sy))]
sim = mp.Simulation(cell_size=cell_size,
boundary_layers=pml_layers,
sources=sources,
k_point=k_point,
kz_2d=kz_2d,
resolution=resolution)
refl_fr = mp.FluxRegion(center=mp.Vector3(-0.25*sx),
size=mp.Vector3(y=sy))
refl = sim.add_flux(fcen,0,1,refl_fr)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50,mp.Ez,mp.Vector3(),1e-9))
empty_flux = mp.get_fluxes(refl)
empty_data = sim.get_flux_data(refl)
sim.reset_meep()
geometry = [mp.Block(material=mp.Medium(index=3.5),
size=mp.Vector3(0.5*sx,mp.inf,mp.inf),
center=mp.Vector3(0.25*sx))]
sim = mp.Simulation(cell_size=cell_size,
boundary_layers=pml_layers,
geometry=geometry,
sources=sources,
k_point=k_point,
kz_2d=kz_2d,
resolution=resolution)
refl = sim.add_flux(fcen,0,1,refl_fr)
sim.load_minus_flux_data(refl,empty_data)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50,mp.Ez,mp.Vector3(),1e-9))
refl_flux = mp.get_fluxes(refl)
Rmeep = -refl_flux[0]/empty_flux[0]
return Rmeep
def test_special_kz(self):
n1 = 1
n2 = 3.5
# compute angle of refracted planewave in medium n2
# for incident planewave in medium n1 at angle theta_in
theta_out = lambda theta_in: math.asin(n1*math.sin(theta_in)/n2)
# compute Fresnel reflectance for P-polarization in medium n2
# for incident planewave in medium n1 at angle theta_in
Rfresnel = lambda theta_in: math.fabs((n1*math.cos(theta_out(theta_in))-n2*math.cos(theta_in))/(n1*math.cos(theta_out(theta_in))+n2*math.cos(theta_in)))**2
theta = math.radians(23)
start = time()
Rmeep_complex = self.refl_planar(theta, 'complex')
t_complex = time() - start
start = time()
Rmeep_real_imag = self.refl_planar(theta, 'real/imag')
t_real_imag = time() - start
Rfres = Rfresnel(theta)
self.assertAlmostEqual(Rmeep_complex,Rfres,places=2)
self.assertAlmostEqual(Rmeep_real_imag,Rfres,places=2)
self.assertLess(t_real_imag,t_complex)
def eigsrc_kz(self, kz_2d):
print(kz_2d)
resolution = 30 # pixels/um
cell_size = mp.Vector3(14,14)
pml_layers = [mp.PML(thickness=2)]
geometry = [mp.Block(center=mp.Vector3(),
size=mp.Vector3(mp.inf,1,mp.inf),
material=mp.Medium(epsilon=12))]
fsrc = 0.3 # frequency of eigenmode or constant-amplitude source
bnum = 1 # band number of eigenmode
kz = 0.2 # fixed out-of-plane wavevector component
sources = [mp.EigenModeSource(src=mp.GaussianSource(fsrc,fwidth=0.2*fsrc),
center=mp.Vector3(),
size=mp.Vector3(y=14),
eig_band=bnum,
eig_parity=mp.EVEN_Y,
eig_match_freq=True)]
sim = mp.Simulation(cell_size=cell_size,
resolution=resolution,
boundary_layers=pml_layers,
sources=sources,
geometry=geometry,
symmetries=[mp.Mirror(mp.Y)],
k_point=mp.Vector3(z=kz),
kz_2d=kz_2d)
tran = sim.add_flux(fsrc, 0, 1, mp.FluxRegion(center=mp.Vector3(x=5), size=mp.Vector3(y=14)))
sim.run(until_after_sources=50)
res = sim.get_eigenmode_coefficients(tran,
[1,2],
eig_parity=mp.EVEN_Y)
total_flux = mp.get_fluxes(tran)[0]
mode1_flux = abs(res.alpha[0,0,0])**2
mode2_flux = abs(res.alpha[1,0,0])**2
mode1_frac = 0.99
self.assertGreater(mode1_flux/total_flux, mode1_frac)
self.assertLess(mode2_flux/total_flux, 1-mode1_frac)
d = 3.5
ez1 = sim.get_field_point(mp.Ez, mp.Vector3(2.3,-5.7,4.8))
ez2 = sim.get_field_point(mp.Ez, mp.Vector3(2.3,-5.7,4.8+d))
ratio_ez = ez2/ez1
phase_diff = cmath.exp(1j*2*cmath.pi*kz*d)
self.assertAlmostEqual(ratio_ez.real,phase_diff.real,places=10)
self.assertAlmostEqual(ratio_ez.imag,phase_diff.imag,places=10)
def test_eigsrc_kz(self):
self.eigsrc_kz("complex")
self.eigsrc_kz("real/imag")
if __name__ == '__main__':
unittest.main()
|