1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
import numpy as np
from scipy.sparse.linalg import cg, spsolve
from scipy.sparse import kron, diags, csr_matrix, eye, csc_matrix
from autograd import numpy as npa
from autograd import grad
from typing import List
solvers = [spsolve, cg]
def constraint_connectivity(
rho: List[float] = None,
nx: int = None,
ny: int = None,
nz: int = None,
cond_v: float = 1.0,
cond_s: float = 1e4,
src_v: float = 0.0,
src_s: float = 1.0,
solver_option: int = 0,
thresh: float = 50.0,
p: float = 3.0,
need_grad: bool = True,
):
"""Computes its connectivity constraint value and the gradients with
respect to each pixel value.
Given a structure, assembles the finite difference matrices of the heat equation
and solves for an auxiliary temperature field. Computes the p-norm of the field
and compares it with the threshold to determine whether the structure is connected
or not. Reference: "Li, Q., Chen, W., Liu, S. et al. Structural topology optimization considering
connectivity constraint. Struct Multidisc Optim 54, 971–984 (2016).
https://doi.org/10.1007/s00158-016-1459-5"
Args:
rho: the structure as (filtered and projected) design variables
nx: size of the design variable in the x direction
ny: size of the design variable in the y direction; should set to 1 for 2D structures
nz: size of the design variable in the z direction; the supporting layer is outside the
last slice of pixels in the z direction
cond_v: heat conductivity for the void pixels; should NOT be changed
cond_s: heat conductivity for solid pixels; IMPORTANT hyperparameter: changes the overall magnitude of
heat constraint; good values generally between 1e3 to 1e5
src_v: heat source value at void pixels; should NOT be changed
src_s: heat source value at solid pixels; should NOT be changed
solver_option: sparse solver option for solving the linear system. 0 for spsolve and 1 for cg
thresh: threshold value against which the p-norm of the temperature field is compared. VERY IMPORTANT
hyperparameter. Good values depend on cond_s and p values. Should be tuned given the problem setup and
after choosing cond_s and p values.
p: which p-norm of the temperature field to compute; good values generally between 3 to 5
need_grad: True if gradients are needed; False if only want the forward constraint value
Returns:
If need_grad = True, returns T, heat, grad; if need_grad = False, only returns heat
T is the computed auxiliary temperature field, heat is the constraint value (negative
for connected and positive for disconnected structures), grad is the gradient of the
constraint with respect to the design variables, i.e. d(heat)/d(rho).
"""
rho = np.reshape(rho, (nz, ny, nx))
n = nx * ny * nz
# gradient matrices
gx = diags([-1, 1], [0, 1], shape=(nx - 1, nx), format="csr")
gy = diags([-1, 1], [0, 1], shape=(ny - 1, ny), format="csr")
gz = diags([-1, 1], [0, 1], shape=(nz, nz), format="csr")
# -div matrices
dx, dy, dz = gx.copy().transpose(), gy.copy().transpose(), gz.copy().transpose()
# 1D -> 3D
Ix, Iy, Iz = eye(nx), eye(ny), eye(nz)
gx, gy, gz = kron(Iz, kron(Iy, gx)), kron(Iz, kron(gy, Ix)), kron(gz, kron(Iy, Ix))
dx, dy, dz = kron(Iz, kron(Iy, dx)), kron(Iz, kron(dy, Ix)), kron(dz, kron(Iy, Ix))
# harmonic mean as mid-point conductivity and derivatives
f = lambda x, y: 2 * x * y / (x + y)
fx = lambda x, y: 2 * (y / (x + y)) ** 2
fy = lambda x, y: 2 * (x / (x + y)) ** 2
cond = cond_v + (cond_s - cond_v) * rho
condx = [
f(cond[k, j, i], cond[k, j, i + 1])
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
condy = [
f(cond[k, j, i], cond[k, j + 1, i])
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
condz = [
f(cond[k, j, i], cond[k + 1, j, i])
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
condz = np.append(condz, [cond_s] * nx * ny) # conductivity at Dirichlet boundary
condx, condy, condz = diags(condx, 0), diags(condy, 0), diags(condz, 0)
src = src_v + (src_s - src_v) * rho.flatten()
eq = dx @ condx @ gx + dy @ condy @ gy + dz @ condz @ gz
solver = solvers[solver_option]
if solver == spsolve:
T = solver(eq, src)
else:
T, info = (solver(eq, src)).reshape(1, -1)
heat_func = lambda x: npa.sum(x**p) ** (1 / p) / thresh
# Instead of constraining heat - threshold <= 0, we are constraining heat/threshold - 1 <= 0
heat_constraint = heat_func(T) - 1
if not need_grad:
return heat_constraint
dgdx = grad(heat_func)(T)
if solver == spsolve:
aT = (solver(eq, dgdx)).reshape(1, -1)
else:
aT, sinfo = (solver(eq, dgdx)).reshape(1, -1)
# conductivity matrix derivative w.r.t 1st and 2nd argument of each entries (e.g. fx and fy)
dcondx_r = [
k * (nx - 1) * ny + j * (nx - 1) + i
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
dcondx_c1 = [
k * nx * ny + j * nx + i
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
dcondx_d1 = [
fx(cond[k, j, i], cond[k, j, i + 1])
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
dcondx1 = csc_matrix(
(dcondx_d1, (dcondx_r, dcondx_c1)), shape=(nz * ny * (nx - 1), nx * ny * nz)
)
dcondx_c2 = [
k * nx * ny + j * nx + i + 1
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
dcondx_d2 = [
fy(cond[k, j, i], cond[k, j, i + 1])
for k in range(nz)
for j in range(ny)
for i in range(nx - 1)
]
dcondx2 = csc_matrix(
(dcondx_d2, (dcondx_r, dcondx_c2)), shape=(nz * ny * (nx - 1), nx * ny * nz)
)
dcondy_r = [
k * nx * (ny - 1) + j * nx + i
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
dcondy_c1 = [
k * nx * ny + j * nx + i
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
dcondy_d1 = [
fx(cond[k, j, i], cond[k, j + 1, i])
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
dcondy1 = csc_matrix(
(dcondy_d1, (dcondy_r, dcondy_c1)), shape=(nz * (ny - 1) * nx, nx * ny * nz)
)
dcondy_c2 = [
k * nx * ny + (j + 1) * nx + i
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
dcondy_d2 = [
fy(cond[k, j, i], cond[k, j + 1, i])
for k in range(nz)
for j in range(ny - 1)
for i in range(nx)
]
dcondy2 = csc_matrix(
(dcondy_d2, (dcondy_r, dcondy_c2)), shape=(nz * (ny - 1) * nx, nx * ny * nz)
)
dcondz_r = [
k * nx * ny + j * nx + i
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
dcondz_c1 = [
k * nx * ny + j * nx + i
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
dcondz_d1 = [
fx(cond[k, j, i], cond[k + 1, j, i])
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
dcondz1 = csc_matrix(
(dcondz_d1, (dcondz_r, dcondz_c1)), shape=(nx * ny * nz, nx * ny * nz)
)
dcondz_c2 = [
(k + 1) * nx * ny + j * nx + i
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
dcondz_d2 = [
fy(cond[k, j, i], cond[k + 1, j, i])
for k in range(nz - 1)
for j in range(ny)
for i in range(nx)
]
dcondz2 = csc_matrix(
(dcondz_d2, (dcondz_r, dcondz_c2)), shape=(nx * ny * nz, nx * ny * nz)
)
dcondx, dcondy, dcondz = dcondx1 + dcondx2, dcondy1 + dcondy2, dcondz1 + dcondz2
dAdp_x = (
dz @ dcondz.multiply(gz @ T.reshape(-1, 1))
+ dy @ dcondy.multiply(gy @ T.reshape(-1, 1))
+ dx @ dcondx.multiply(gx @ T.reshape(-1, 1))
)
gradient = aT * (src_s - src_v) - (cond_s - cond_v) * (aT @ dAdp_x)
return T, heat_constraint, gradient
# Finite difference gradient for debugging.
def cc_fd(
rho,
nx,
ny,
nz,
cond_v=1,
cond_s=1e6,
src_v=0,
src_s=1,
solver_option=0,
thresh=None,
p=4,
num_grad=6,
db=1e-6,
):
n = nx * ny * nz
fdidx = np.random.choice(n, num_grad)
fdgrad = []
for k in fdidx:
rho[k] += db
fp = constraint_connectivity(
rho.reshape((nz, ny, nx)),
nx,
ny,
nz,
cond_v,
cond_s,
src_v,
src_s,
solver_option,
thresh,
p,
need_grad=False,
)
rho[k] -= 2 * db
fm = constraint_connectivity(
rho.reshape((nz, ny, nx)),
nx,
ny,
nz,
cond_v,
cond_s,
src_v,
src_s,
solver_option,
thresh,
p,
need_grad=False,
)
fdgrad.append((fp - fm) / (2 * db))
rho[k] += db
return fdidx, fdgrad
|