1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
"""
A collection of routines for use in topology optimization comprising
convolution filters (kernels), projection operators, and morphological
transforms.
"""
import sys
from typing import List, Tuple, Union
import numpy as np
from autograd import numpy as npa
from scipy import signal, special
ArrayLikeType = Union[List, Tuple, np.ndarray]
def _centered(arr: np.ndarray, newshape: ArrayLikeType) -> np.ndarray:
"""Formats the output of an FFT to center the zero-frequency component.
A helper function borrowed from SciPy:
https://github.com/scipy/scipy/blob/v1.4.1/scipy/signal/signaltools.py#L263-L270
Args:
arr: output array from an FFT operation.
newshape: 1d array with two elements (integers) specifying the dimensions
of the array to be returned.
Returns:
The input array with the zero-frequency component as the central element.
"""
newshape = np.asarray(newshape)
currshape = np.array(arr.shape)
startind = (currshape - newshape) // 2
endind = startind + newshape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def _quarter_to_full_kernel(arr: np.ndarray, pad_to: np.ndarray) -> np.ndarray:
"""Constructs the full kernel from its nonnegative quadrant.
Args:
arr: 2d input array representing the nonnegative quadrant of a
filter kernel with C4v symmetry.
pad_to: 1d array with two elements (integers) specifying the size
of the zero padding.
Returns:
The complete kernel.
"""
pad_size = pad_to - 2 * np.array(arr.shape) + 1
top = np.zeros((pad_size[0], arr.shape[1]))
bottom = np.zeros((pad_size[0], arr.shape[1] - 1))
middle = np.zeros((pad_to[0], pad_size[1]))
top_left = arr[:, :]
top_right = npa.flipud(arr[1:, :])
bottom_left = npa.fliplr(arr[:, 1:])
bottom_right = npa.flipud(
npa.fliplr(arr[1:, 1:])
) # equivalent to flip, but flip is incompatible with autograd
return npa.concatenate(
(
npa.concatenate((top_left, top, top_right)),
middle,
npa.concatenate((bottom_left, bottom, bottom_right)),
),
axis=1,
)
def _edge_pad(arr: np.ndarray, pad: np.ndarray) -> np.ndarray:
"""Zero-pads the edges of an array.
Used to preprocess the design weights prior to convolution with the filter.
Args:
arr: 2d array representing the nonnegative coordinates of a
filter kernel with C4v symmetry.
pad: 2x2 array of integers indicating the size
of the zero-padded array.
Returns:
A 2d array with zero padding.
"""
# fill sides
left = npa.tile(arr[0, :], (pad[0][0], 1))
right = npa.tile(arr[-1, :], (pad[0][1], 1))
top = npa.tile(arr[:, 0], (pad[1][0], 1)).transpose()
bottom = npa.tile(arr[:, -1], (pad[1][1], 1)).transpose()
# fill corners
top_left = npa.tile(arr[0, 0], (pad[0][0], pad[1][0]))
top_right = npa.tile(arr[-1, 0], (pad[0][1], pad[1][0]))
bottom_left = npa.tile(arr[0, -1], (pad[0][0], pad[1][1]))
bottom_right = npa.tile(arr[-1, -1], (pad[0][1], pad[1][1]))
if pad[0][0] > 0 and pad[0][1] > 0 and pad[1][0] > 0 and pad[1][1] > 0:
return npa.concatenate(
(
npa.concatenate((top_left, top, top_right)),
npa.concatenate((left, arr, right)),
npa.concatenate((bottom_left, bottom, bottom_right)),
),
axis=1,
)
elif pad[0][0] == 0 and pad[0][1] == 0 and pad[1][0] > 0 and pad[1][1] > 0:
return npa.concatenate((top, arr, bottom), axis=1)
elif pad[0][0] > 0 and pad[0][1] > 0 and pad[1][0] == 0 and pad[1][1] == 0:
return npa.concatenate((left, arr, right), axis=0)
elif pad[0][0] == 0 and pad[0][1] == 0 and pad[1][0] == 0 and pad[1][1] == 0:
return arr
else:
raise ValueError("At least one of the padding numbers is invalid.")
def convolve_design_weights_and_kernel(
x: np.ndarray, h: np.ndarray, periodic_axes: ArrayLikeType = None
) -> np.ndarray:
"""Convolves the design weights with the kernel.
Uses a 2d FFT to perform the convolution operation. This approach is
typically faster than a direct calculation. It also preserves the shape
of the input and output arrays. The arrays are zero-padded prior to the
FFT to prevent unwanted effects from the edges.
Args:
x: 2d design weights.
h: filter kernel. Must be same size as `x`
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The convolution of the design weights with the kernel as a 2d array.
"""
(sx, sy) = x.shape
if periodic_axes is None:
h = _quarter_to_full_kernel(h, 3 * np.array([sx, sy]))
x = _edge_pad(x, ((sx, sx), (sy, sy)))
else:
(kx, ky) = h.shape
npx = int(
np.ceil((2 * kx - 1) / sx)
) # 2*kx-1 is the size of a complete kernel in the x direction
npy = int(
np.ceil((2 * ky - 1) / sy)
) # 2*ky-1 is the size of a complete kernel in the y direction
if npx % 2 == 0:
npx += 1 # Ensure npx is an odd number
if npy % 2 == 0:
npy += 1 # Ensure npy is an odd number
periodic_axes = np.array(periodic_axes)
# Repeat the design pattern in periodic directions according to
# the kernel size
x = npa.tile(
x, (npx if 0 in periodic_axes else 1, npy if 1 in periodic_axes else 1)
)
npadx = 0 if 0 in periodic_axes else sx
npady = 0 if 1 in periodic_axes else sy
x = _edge_pad(
x, ((npadx, npadx), (npady, npady))
) # pad only in nonperiodic directions
h = _quarter_to_full_kernel(
h,
np.array(
[
npx * sx if 0 in periodic_axes else 3 * sx,
npy * sy if 1 in periodic_axes else 3 * sy,
]
),
)
h = h / npa.sum(h) # Normalize the kernel
return _centered(
npa.real(npa.fft.ifft2(npa.fft.fft2(x) * npa.fft.fft2(h))), (sx, sy)
)
def _get_resolution(resolution: ArrayLikeType) -> tuple:
"""Converts input design-grid resolution to the acceptable format.
Args:
resolution: number of list of numbers representing design-grid
resolution, allowing anisotropic resolution.
Returns:
A two-element tuple composed of the resolution in x and y directions.
"""
if isinstance(resolution, (tuple, list, np.ndarray)):
if len(resolution) == 2:
return resolution
elif len(resolution) == 1:
return resolution[0], resolution[0]
else:
raise ValueError(
"The dimension of the design-grid resolution is incorrect."
)
elif isinstance(resolution, (int, float)):
return resolution, resolution
else:
raise ValueError("The input for design-grid resolution is invalid.")
def mesh_grid(
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> tuple:
"""Obtains the numbers of grid points and the coordinates of the grid
of the design region.
Args:
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
A four-element tuple composed of the numbers of grid points and
the coordinates of the grid.
"""
resolution = _get_resolution(resolution)
Nx = int(round(Lx * resolution[0])) + 1
Ny = int(round(Ly * resolution[1])) + 1
if Nx <= 1 and Ny <= 1:
raise AssertionError(
"The grid size is improper. Check the size and resolution of the design region."
)
xv = np.arange(0, Lx / 2, 1 / resolution[0]) if resolution[0] > 0 else [0]
yv = np.arange(0, Ly / 2, 1 / resolution[1]) if resolution[1] > 0 else [0]
# If the design weights are periodic in a direction,
# the size of the kernel in that direction needs to be adjusted
# according to the filter radius.
if periodic_axes is not None:
periodic_axes = np.array(periodic_axes)
if 0 in periodic_axes:
xv = (
npa.arange(0, npa.ceil(2 * radius / Lx) * Lx / 2, 1 / resolution[0])
if resolution[0] > 0
else [0]
)
if 1 in periodic_axes:
yv = (
npa.arange(0, npa.ceil(2 * radius / Ly) * Ly / 2, 1 / resolution[1])
if resolution[1] > 0
else [0]
)
X, Y = np.meshgrid(xv, yv, sparse=True, indexing="ij")
return Nx, Ny, X, Y
def cylindrical_filter(
x: np.ndarray,
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> np.ndarray:
"""A cylindrical convolution filter.
Typically allows for sharper features compared to other types of filters.
Ref: B.S. Lazarov, F. Wang, & O. Sigmund, Length scale and
manufacturability in density-based topology optimization,
Archive of Applied Mechanics, 86(1-2), pp. 189-218 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(radius, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = np.where(X**2 + Y**2 < radius**2, 1, 0)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def conic_filter(
x: np.ndarray,
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> np.ndarray:
"""A linear conic (or "hat") filter.
Ref: B.S. Lazarov, F. Wang, & O. Sigmund, Length scale and
manufacturability in density-based topology optimization.
Archive of Applied Mechanics, 86(1-2), pp. 189-218 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(radius, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = npa.where(
X**2 + Y**2 < radius**2, (1 - np.sqrt(abs(X**2 + Y**2)) / radius), 0
)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def gaussian_filter(
x: np.ndarray,
sigma: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
):
"""A Gaussian filter.
Ref: E. W. Wang, D. Sell, T. Phan, & J. A. Fan, Robust design of
topology-optimized metasurfaces, Optical Materials Express, 9(2),
pp. 469-482 (2019).
Args:
x: 2d design weights.
sigma: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(3 * sigma, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = np.exp(-(X**2 + Y**2) / sigma**2)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def exponential_erosion(
x: np.ndarray,
radius: float,
beta: float,
Lx: float,
Ly: float,
resolution: int,
periodic_axes: ArrayLikeType = None,
):
"""Morphological erosion using an exponential projection operator.
Refs:
O. Sigmund, Morphology-based black and white filters for topology
optimization. Structural and Multidisciplinary Optimization,
33(4-5), pp. 401-424 (2007).
M. Schevenels & O. Sigmund, On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization.
Structural and Multidisciplinary Optimization, 54(1), pp. 15-21 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
beta: threshold value for projection. Range of [0, inf].
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The eroded design weights.
"""
x_hat = npa.exp(beta * (1 - x))
return (
1
- npa.log(
cylindrical_filter(
x_hat, radius, Lx, Ly, resolution, periodic_axes
).flatten()
)
/ beta
)
def exponential_dilation(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Morphological dilation using an exponential projection operator.
Refs:
O. Sigmund, Morphology-based black and white filters for topology
optimization. Structural and Multidisciplinary Optimization,
33(4-5), pp. 401-424 (2007).
M. Schevenels & O. Sigmund, On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization.
Structural and Multidisciplinary Optimization, 54(1), pp. 15-21 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
beta: threshold value for projection. Range of [0, inf].
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The dilated design weights.
"""
x_hat = npa.exp(beta * x)
return (
npa.log(
cylindrical_filter(
x_hat, radius, Lx, Ly, resolution, periodic_axes
).flatten()
)
/ beta
)
def heaviside_erosion(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Performs a heaviside erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution, periodic_axes).flatten()
return npa.exp(-beta * (1 - x_hat)) + npa.exp(-beta) * (1 - x_hat)
def heaviside_dilation(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Performs a heaviside dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution, periodic_axes).flatten()
return 1 - npa.exp(-beta * x_hat) + npa.exp(-beta) * x_hat
def geometric_erosion(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a geometric erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(x + alpha)
return (
npa.exp(
cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes)
).flatten()
- alpha
)
def geometric_dilation(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a geometric dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(1 - x + alpha)
return (
-npa.exp(
cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes)
).flatten()
+ alpha
+ 1
)
def harmonic_erosion(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a harmonic erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (x + alpha)
return (
1
/ cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes).flatten()
- alpha
)
def harmonic_dilation(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a harmonic dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (1 - x + alpha)
return (
1
- 1
/ cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes).flatten()
+ alpha
)
def tanh_projection(x: np.ndarray, beta: float, eta: float) -> np.ndarray:
"""Sigmoid projection filter.
Ref: F. Wang, B. S. Lazarov, & O. Sigmund, On projection methods,
convergence and robust formulations in topology optimization.
Structural and Multidisciplinary Optimization, 43(6), pp. 767-784 (2011).
Args:
x: 2d design weights to be filtered.
beta: thresholding parameter in the range [0, inf]. Determines the
degree of binarization of the output.
eta: threshold point in the range [0, 1].
Returns:
The filtered design weights.
"""
if beta == npa.inf:
# Note that backpropagating through here can produce NaNs. So we
# manually specify the step function to keep the gradient clean.
return npa.where(x > eta, 1.0, 0.0)
else:
return (npa.tanh(beta * eta) + npa.tanh(beta * (x - eta))) / (
npa.tanh(beta * eta) + npa.tanh(beta * (1 - eta))
)
def smoothed_projection(
x_smoothed: ArrayLikeType,
beta: float,
eta: float,
resolution: float,
):
"""Project using subpixel smoothing, which allows for β→∞.
This technique integrates out the discontinuity within the projection
function, allowing the user to smoothly increase β from 0 to ∞ without
losing the gradient. Effectively, a level set is created, and from this
level set, first-order subpixel smoothing is applied to the interfaces (if
any are present).
In order for this to work, the input array must already be smooth (e.g. by
filtering).
While the original approach involves numerical quadrature, this approach
performs a "trick" by assuming that the user is always infinitely projecting
(β=∞). In this case, the expensive quadrature simplifies to an analytic
fill-factor expression. When to use this fill factor requires some careful
logic.
For one, we want to make sure that the user can indeed project at any level
(not just infinity). So in these cases, we simply check if in interface is
within the pixel. If not, we revert to the standard filter plus project
technique.
If there is an interface, we want to make sure the derivative remains
continuous both as the interface leaves the cell, *and* as it crosses the
center. To ensure this, we need to account for the different possibilities.
Args:
x: The (2D) input design parameters.
beta: The thresholding parameter in the range [0, inf]. Determines the
degree of binarization of the output.
eta: The threshold point in the range [0, 1].
resolution: resolution of the design grid (not the Meep grid
resolution).
Returns:
The projected and smoothed output.
Example:
>>> Lx = 2; Ly = 2
>>> resolution = 50
>>> eta_i = 0.5; eta_e = 0.75
>>> lengthscale = 0.1
>>> filter_radius = get_conic_radius_from_eta_e(lengthscale, eta_e)
>>> Nx = onp.round(Lx * resolution) + 1
>>> Ny = onp.round(Ly * resolution) + 1
>>> A = onp.random.rand(Nx, Ny)
>>> beta = npa.inf
>>> A_smoothed = conic_filter(A, filter_radius, Lx, Ly, resolution)
>>> A_projected = smoothed_projection(A_smoothed, beta, eta_i, resolution)
"""
# Note that currently, the underlying assumption is that the smoothing
# kernel is a circle, which means dx = dy.
dx = dy = 1 / resolution
pixel_radius = dx / 2
x_projected = tanh_projection(x_smoothed, beta=beta, eta=eta)
# Compute the spatial gradient (using finite differences) of the *filtered*
# field, which will always be smooth and is the key to our approach. This
# gradient essentially represents the normal direction pointing the the
# nearest inteface.
x_grad = npa.gradient(x_smoothed)
x_grad_helper = (x_grad[0] / dx) ** 2 + (x_grad[1] / dy) ** 2
# Note that a uniform field (norm=0) is problematic, because it creates
# divide by zero issues and makes backpropagation difficult, so we sanitize
# and determine where smoothing is actually needed. The value where we don't
# need smoothings doesn't actually matter, since all our computations our
# purely element-wise (no spatial locality) and those pixels will instead
# rely on the standard projection. So just use 1, since it's well behaved.
nonzero_norm = npa.abs(x_grad_helper) > 0
x_grad_norm = npa.sqrt(npa.where(nonzero_norm, x_grad_helper, 1))
x_grad_norm_eff = npa.where(nonzero_norm, x_grad_norm, 1)
# The distance for the center of the pixel to the nearest interface
d = (eta - x_smoothed) / x_grad_norm_eff
# Only need smoothing if an interface lies within the voxel. Since d is
# actually an "effective" d by this point, we need to ignore values that may
# have been sanitized earlier on.
needs_smoothing = nonzero_norm & (npa.abs(d) <= pixel_radius)
# The fill factor is used to perform simple, first-order subpixel smoothing.
# We use the (2D) analytic expression that comes when assuming the smoothing
# kernel is a circle. Note that because the kernel contains some
# expressions that are sensitive to NaNs, we have to use the "double where"
# trick to avoid the Nans in the backward trace. This is a common problem
# with array-based AD tracers, apparently. See here:
# https://github.com/google/jax/issues/1052#issuecomment-5140833520
arccos_term = pixel_radius**2 * npa.arccos(
npa.where(
needs_smoothing,
d / pixel_radius,
0.0,
)
)
sqrt_term = d * npa.sqrt(
npa.where(
needs_smoothing,
pixel_radius**2 - d**2,
1,
)
)
fill_factor = npa.where(
needs_smoothing,
(1 / (npa.pi * pixel_radius**2)) * (arccos_term - sqrt_term),
1,
)
# Determine the upper and lower bounds of materials in the current pixel (before projection).
x_minus = x_smoothed - x_grad_norm * pixel_radius
x_plus = x_smoothed + x_grad_norm * pixel_radius
# Create an "effective" set of materials that will ensure everything is
# piecewise differentiable, even if an interface moves out of a pixel, or
# through the pixel center.
x_minus_eff_pert = (x_smoothed * d + x_minus * (pixel_radius - d)) / pixel_radius
x_minus_eff = npa.where(
(d > 0),
x_minus_eff_pert,
x_minus,
)
x_plus_eff_pert = (-x_smoothed * d + x_plus * (pixel_radius + d)) / pixel_radius
x_plus_eff = npa.where(
(d > 0),
x_plus,
x_plus_eff_pert,
)
# Finally, we project the extents of our range.
x_plus_eff_projected = tanh_projection(x_plus_eff, beta=beta, eta=eta)
x_minus_eff_projected = tanh_projection(x_minus_eff, beta=beta, eta=eta)
# Only apply smoothing to interfaces
x_projected_smoothed = (1 - fill_factor) * x_minus_eff_projected + (
fill_factor
) * x_plus_eff_projected
return npa.where(
needs_smoothing,
x_projected_smoothed,
x_projected,
)
def heaviside_projection(x, beta, eta):
"""Projection filter that thresholds the input parameters between 0 and 1.
Parameters
----------
x : array_like
Design parameters
beta : float
Thresholding parameter (0 to infinity). Dictates how "binary" the output will be.
eta: float
Threshold point (0 to 1)
Returns
-------
array_like
Projected and flattened design parameters.
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
case1 = eta * npa.exp(-beta * (eta - x) / eta) - (eta - x) * npa.exp(-beta)
case2 = (
1
- (1 - eta) * npa.exp(-beta * (x - eta) / (1 - eta))
- (eta - x) * npa.exp(-beta)
)
return npa.where(x < eta, case1, case2)
"""
# ------------------------------------------------------------------------------------ #
Length scale operations
"""
def get_threshold_wang(delta, sigma):
"""Calculates the threshold point according to the gaussian filter radius (`sigma`) and
the perturbation parameter (`sigma`) needed to ensure the proper length
scale and morphological transformation according to Wang et. al. [2].
Parameters
----------
sigma : float
Smoothing radius (in meep units)
delta : float
Perturbation parameter (in meep units)
Returns
-------
float
Threshold point (`eta`)
References
----------
[1] Wang, F., Jensen, J. S., & Sigmund, O. (2011). Robust topology optimization of
photonic crystal waveguides with tailored dispersion properties. JOSA B, 28(3), 387-397.
[2] Wang, E. W., Sell, D., Phan, T., & Fan, J. A. (2019). Robust design of
topology-optimized metasurfaces. Optical Materials Express, 9(2), 469-482.
"""
return 0.5 - special.erf(delta / sigma)
def get_eta_from_conic(b, R):
"""Extracts the eroded threshold point (`eta_e`) for a conic filter given the desired
minimum length (`b`) and the filter radius (`R`). This only works for conic filters.
Note that the units for `b` and `R` can be arbitrary so long as they are consistent.
Results in paper were thresholded using a "tanh" Heaviside projection.
Parameters
----------
b : float
Desired minimum length scale.
R : float
Conic filter radius
Returns
-------
float
The eroded threshold point (1-eta)
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
norm_length = b / R
if norm_length < 0:
return 0
elif norm_length < 1:
return 0.25 * norm_length**2 + 0.5
elif norm_length < 2:
return -0.25 * norm_length**2 + norm_length
else:
return 1
def get_conic_radius_from_eta_e(b, eta_e):
"""Calculates the corresponding filter radius given the minimum length scale (b)
and the desired eroded threshold point (eta_e).
Parameters
----------
b : float
Desired minimum length scale.
eta_e : float
Eroded threshold point (1-eta)
Returns
-------
float
Conic filter radius.
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
if (eta_e >= 0.5) and (eta_e < 0.75):
return b / (2 * np.sqrt(eta_e - 0.5))
elif (eta_e >= 0.75) and (eta_e <= 1):
return b / (2 - 2 * np.sqrt(1 - eta_e))
else:
raise ValueError(
"The erosion threshold point (eta_e) must be between 0.5 and 1."
)
def length_indicator(x, filter_f, threshold_f, resolution, periodic_axes=None):
"""Calculates the design field and the magnitude of its gradient for lengthscale indicators [1].
Parameters
----------
x : array_like
Design parameters
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
A two-element tuple composed of the design field and the magnitude of its gradient
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = npa.squeeze(filter_f(x))
design_field = threshold_f(filtered_field)
design_dim = filtered_field.ndim
resolution = _get_resolution(resolution)
if periodic_axes is None:
gradient_filtered_field = npa.gradient(filtered_field)
else:
periodic_axes = np.array(periodic_axes)
if 0 in periodic_axes:
if design_dim == 2:
filtered_field = npa.tile(filtered_field, (3, 1))
if design_dim == 1 and resolution[0] > resolution[1]:
filtered_field = npa.tile(filtered_field, 3)
if 1 in periodic_axes:
if design_dim == 2:
filtered_field = npa.tile(filtered_field, (1, 3))
if design_dim == 1 and resolution[0] < resolution[1]:
filtered_field = npa.tile(filtered_field, 3)
if design_dim == 2:
gradient_filtered_field = _centered(
npa.array(npa.gradient(filtered_field)), (2,) + x.shape
)
elif design_dim == 1:
gradient_filtered_field = _centered(
npa.array(npa.gradient(filtered_field)), design_field.shape
)
else:
raise ValueError(
"The design fields must be 1d or 2d. Check input array and filter functions."
)
if design_dim == 2:
grad_mag = (gradient_filtered_field[0] * resolution[0]) ** 2 + (
gradient_filtered_field[1] * resolution[1]
) ** 2
else:
grad_mag = (npa.squeeze(gradient_filtered_field) * max(resolution)) ** 2
if grad_mag.ndim not in (1, 2):
raise ValueError(
"The gradient fields must be 1d or 2d. Check input array and filter functions."
)
return design_field, grad_mag
def indicator_solid(x, c, filter_f, threshold_f, resolution, periodic_axes=None):
"""Calculates the indicator function for the solid phase needed for minimum length constraint [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Indicator value
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
design_field, grad_mag = length_indicator(
x, filter_f, threshold_f, resolution, periodic_axes
)
return design_field * npa.exp(-c * grad_mag)
def constraint_solid(
x, c, eta_e, filter_f, threshold_f, resolution, periodic_axes=None
):
"""Calculates the constraint function of the solid phase needed for minimum length constraint [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_e : float
Erosion threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
float
Constraint value
Example
-------
>> g_s = constraint_solid(x,c,eta_e,filter_f,threshold_f) # constraint
>> g_s_grad = grad(constraint_solid,0)(x,c,eta_e,filter_f,threshold_f) # gradient
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x)
I_s = indicator_solid(
x.reshape(filtered_field.shape),
c,
filter_f,
threshold_f,
resolution,
periodic_axes,
).flatten()
return npa.mean(I_s * npa.minimum(filtered_field.flatten() - eta_e, 0) ** 2)
def indicator_void(x, c, filter_f, threshold_f, resolution, periodic_axes=None):
"""Calculates the indicator function for the void phase needed for minimum length constraint [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_d : float
Dilation threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Indicator value
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
design_field, grad_mag = length_indicator(
x, filter_f, threshold_f, resolution, periodic_axes
)
return (1 - design_field) * npa.exp(-c * grad_mag)
def constraint_void(x, c, eta_d, filter_f, threshold_f, resolution, periodic_axes=None):
"""Calculates the constraint function of the void phase needed for minimum length constraint [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_d : float
Dilation threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic).
Returns
-------
float
Constraint value
Example
-------
>> g_v = constraint_void(p,c,eta_d,filter_f,threshold_f) # constraint
>> g_v_grad = tensor_jacobian_product(constraint_void,0)(p,c,eta_d,filter_f,threshold_f,g_s) # gradient
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x)
I_v = indicator_void(
x.reshape(filtered_field.shape),
c,
filter_f,
threshold_f,
resolution,
periodic_axes,
).flatten()
return npa.mean(I_v * npa.minimum(eta_d - filtered_field.flatten(), 0) ** 2)
def gray_indicator(x):
"""Calculates a measure of "grayness" according to [1].
Lower numbers ( < 2%) indicate a good amount of binarization [1].
Parameters
----------
x : array_like
Filtered and thresholded design parameters (between 0 and 1)
Returns
-------
float
Measure of "grayness" (in percent)
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
return npa.mean(4 * x.flatten() * (1 - x.flatten())) * 100
|