1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
"""
A collection of objects and helper methods for defining objective functions
used in topology optimization.
"""
import abc
from collections import namedtuple
from typing import Callable, List, Optional
import numpy as np
from meep.simulation import py_v3_to_vec, FluxData, NearToFarData
import meep as mp
from .filter_source import FilteredSource
Grid = namedtuple("Grid", ["x", "y", "z", "w"])
class ObjectiveQuantity(abc.ABC):
"""A differentiable objective quantity.
Attributes:
sim: the Meep simulation object used to register the objective quantity.
frequencies: the frequencies at which the objective quantity is
evaluated.
num_freq: the number of frequencies at which the objective quantity is
evaluated.
"""
def __init__(self, sim):
self.sim = sim
self._eval = None
self._frequencies = None
@property
def frequencies(self):
return self._frequencies
@property
def num_freq(self):
return len(self.frequencies)
@abc.abstractmethod
def __call__(self):
"""Evaluates the objective quantity."""
@abc.abstractmethod
def register_monitors(self, frequencies):
"""Registers monitors in the forward simulation."""
@abc.abstractmethod
def place_adjoint_source(self, dJ):
"""Places appropriate sources for the adjoint simulation."""
def get_evaluation(self):
"""Evaluates the objective quantity."""
if self._eval is not None:
return self._eval
else:
raise RuntimeError(
"You must first run a forward simulation before requesting the"
"evaluation of an objective quantity."
)
def _adj_src_scale(self, include_resolution=True):
"""Calculates the scale for the adjoint sources."""
T = self.sim.meep_time()
dt = self.sim.fields.dt
src = self._create_time_profile()
if include_resolution:
num_dims = self.sim._infer_dimensions(self.sim.k_point)
dV = 1 / self.sim.resolution**num_dims
else:
dV = 1
iomega = (1.0 - np.exp(-1j * (2 * np.pi * self._frequencies) * dt)) * (
1.0 / dt
) # scaled frequency factor with discrete time derivative fix
# an ugly way to calcuate the scaled dtft of the forward source
y = np.array(
[src.swigobj.current(t, dt) for t in np.arange(0, T, dt)]
) # time domain signal
fwd_dtft = (
np.matmul(
np.exp(
1j
* 2
* np.pi
* self._frequencies[:, np.newaxis]
* np.arange(y.size)
* dt
),
y,
)
* dt
/ np.sqrt(2 * np.pi)
)
# Interestingly, the real parts of the DTFT and Fourier transform match,
# but the imaginary parts are very different...
# fwd_dtft = src.fourier_transform(src.frequency)
#
# Note: for some reason, there seems to be an additional phase factor at
# the center frequency that needs to be applied to *all* frequencies...
src_center_dtft = (
np.matmul(
np.exp(
1j
* 2
* np.pi
* np.array([src.frequency])[:, np.newaxis]
* np.arange(y.size)
* dt
),
y,
)
* dt
/ np.sqrt(2 * np.pi)
)
adj_src_phase = np.exp(1j * np.angle(src_center_dtft)) * self.fwidth_scale
if self._frequencies.size == 1:
# Single-frequency simulations. Requires a time profile.
scale = dV * iomega / fwd_dtft / adj_src_phase # final scale factor
else:
# Multi-frequency simulations.
scale = dV * iomega / adj_src_phase
# Cmpensate for the fact that real fields take the real part of the
# current, which halves the Fourier amplitude at the positive frequency
# (i.e. Re[J] = (J + J*)/2).
if self.sim.using_real_fields():
scale *= 2
return scale
def _create_time_profile(self, fwidth_frac=0.1, adj_cutoff=5):
"""Creates a time-domain waveform for normalizing the adjoint source(s).
For single-frequency objective functions, we should generate a Gaussian
pulse with a reasonable bandwidth centered at the given frequency.
TODO:
The user may specify a scalar-valued objective function across multiple
frequencies (e.g. MSE) in which case we should check that all the
frequencies fit in the specified bandwidth.
"""
self.fwidth_scale = np.exp(-2j * np.pi * adj_cutoff / fwidth_frac)
return mp.GaussianSource(
np.mean(self._frequencies),
fwidth=fwidth_frac * np.mean(self._frequencies),
cutoff=adj_cutoff,
)
class EigenmodeCoefficient(ObjectiveQuantity):
"""A differentiable frequency-dependent eigenmode coefficient."""
def __init__(
self,
sim: mp.Simulation,
volume: mp.Volume,
mode: int,
forward: Optional[bool] = True,
kpoint_func: Optional[Callable] = None,
kpoint_func_overlap_idx: Optional[int] = 0,
decimation_factor: Optional[int] = 0,
subtracted_dft_fields: Optional[FluxData] = None,
**kwargs
):
"""Initialize an instance of a differentiable frequency-dependent
eigenmode coefficient.
Args:
sim: the Meep simulation object of the problem.
volume: the volume over which the eigenmode coefficient is calculated.
mode: the eigenmode number.
forward: whether the forward or backward mode coefficient is returned
as the result of the evaluation. Default is True.
kpoint_func: an optional k-point function to use when evaluating the
eigenmode coefficient. When specified, this overrides the effect
of `forward`.
kpoint_func_overlap_idx: the index of the mode coefficient to return
when specifying `kpoint_func`. When specified, this overrides the
effect of `forward` and should have a value of either 0 or 1.
decimation_factor: An integer used to specify the number of timesteps
between updates of the DFT fields. The default is 0, at which the
value is automatically determined from the Nyquist rate of the
bandwidth-limited sources and the DFT monitor. It can be turned
off by setting it to 1.
subtracted_dft_fields: the DFT fields obtained using `get_flux_data`
from a previous normalization run. This is subtracted from the
DFT fields of this mode monitor in order to improve the accuracy
of the reflectance measurement (i.e., the $S_{11}$ scattering
parameter). Default is None.
eigenmode_kwargs: additional keyword arguments for EigenModeSource.
"""
super().__init__(sim)
if kpoint_func_overlap_idx not in [0, 1]:
raise ValueError(
"`kpoint_func_overlap_idx` should be either 0 or 1, but got %d"
% (kpoint_func_overlap_idx,)
)
self.volume = volume
self.mode = mode
self.forward = forward
self.kpoint_func = kpoint_func
self.kpoint_func_overlap_idx = kpoint_func_overlap_idx
self.eigenmode_kwargs = kwargs
self._monitor = None
self._cscale = None
self.decimation_factor = decimation_factor
self.subtracted_dft_fields = subtracted_dft_fields
def register_monitors(self, frequencies):
self._frequencies = np.asarray(frequencies)
self._monitor = self.sim.add_mode_monitor(
frequencies,
mp.ModeRegion(center=self.volume.center, size=self.volume.size),
yee_grid=True,
decimation_factor=self.decimation_factor,
)
if self.subtracted_dft_fields is not None:
self.sim.load_minus_flux_data(
self._monitor,
self.subtracted_dft_fields,
)
return self._monitor
def place_adjoint_source(self, dJ):
dJ = np.atleast_1d(dJ)
if dJ.ndim == 2:
dJ = np.sum(dJ, axis=1)
time_src = self._create_time_profile()
da_dE = 0.5 * self._cscale
scale = self._adj_src_scale()
if self.kpoint_func:
eig_kpoint = -1 * self.kpoint_func(time_src.frequency, self.mode)
else:
center_frequency = 0.5 * (
np.min(self.frequencies) + np.max(self.frequencies)
)
direction = mp.Vector3(
*(np.eye(3)[self._monitor.normal_direction] * np.abs(center_frequency))
)
eig_kpoint = -1 * direction if self.forward else direction
if self._frequencies.size == 1:
amp = da_dE * dJ * scale
src = time_src
else:
scale = da_dE * dJ * scale
src = FilteredSource(
time_src.frequency,
self._frequencies,
scale,
self.sim.fields.dt,
)
amp = 1
source = mp.EigenModeSource(
src,
eig_band=self.mode,
direction=mp.NO_DIRECTION,
eig_kpoint=eig_kpoint,
amplitude=amp,
eig_match_freq=True,
size=self.volume.size,
center=self.volume.center,
**self.eigenmode_kwargs,
)
return [source]
def __call__(self):
"""The values of the eigenmode coefficient at each frequency.
Returns:
1D array of eigenmode coefficients for each frequency in
self.frequencies.
"""
if self.kpoint_func:
kpoint_func = self.kpoint_func
overlap_idx = self.kpoint_func_overlap_idx
else:
center_frequency = 0.5 * (
np.min(self.frequencies) + np.max(self.frequencies)
)
kpoint = mp.Vector3(
*(np.eye(3)[self._monitor.normal_direction] * np.abs(center_frequency))
)
kpoint_func = lambda *not_used: kpoint if self.forward else -1 * kpoint
overlap_idx = 0
ob = self.sim.get_eigenmode_coefficients(
self._monitor,
[self.mode],
direction=mp.NO_DIRECTION,
kpoint_func=kpoint_func,
**self.eigenmode_kwargs,
)
overlaps = ob.alpha.squeeze(axis=0)
assert overlaps.ndim == 2
self._eval = overlaps[:, overlap_idx]
self._cscale = ob.cscale
return self._eval
class FourierFields(ObjectiveQuantity):
"""A differentiable frequency-dependent Fourier fields (dft_fields)"""
def __init__(
self,
sim: mp.Simulation,
volume: mp.Volume,
component: int,
yee_grid: Optional[bool] = False,
decimation_factor: Optional[int] = 0,
subtracted_dft_fields: Optional[FluxData] = None,
):
"""Initialize an instance of differentiable Fourier fields instance.
Args:
sim: the Meep simulation object of the problem.
volume: the volume over which the eigenmode coefficient is calculated. Due to an unresolved bug,
the size must not be zero in at least one direction.
component: field component (e.g. mp.Ex, mp.Hz, etc.) of the Fourier fields
yee_grid: if True, the Fourier fields are evaluated at the corresponding Yee grid points;
otherwise, they are interpolated fields at the center of each voxel. Default is False
decimation_factor: An integer used to specify the number of timesteps between updates of
the DFT fields. The default is 0, at which the value is automatically determined from the
Nyquist rate of the bandwidth-limited sources and the DFT monitor. It can be turned off
by setting it to 1.
subtracted_dft_fields: the DFT fields obtained using `get_flux_data` from
a previous normalization run. This is subtracted from the DFT fields
of this mode monitor in order to improve the accuracy of the
reflectance measurement (i.e., the $S_{11}$ scattering parameter). Default is None.
"""
super().__init__(sim)
self.volume = sim._fit_volume_to_simulation(volume)
self.component = component
self.yee_grid = yee_grid
self.decimation_factor = decimation_factor
self.subtracted_dft_fields = subtracted_dft_fields
def register_monitors(self, frequencies):
self._frequencies = np.asarray(frequencies)
self._monitor = self.sim.add_dft_fields(
[self.component],
self._frequencies,
where=self.volume,
yee_grid=self.yee_grid,
decimation_factor=self.decimation_factor,
)
if self.subtracted_dft_fields is not None:
self.sim.load_minus_flux_data(
self._monitor,
self.subtracted_dft_fields,
)
return self._monitor
def place_adjoint_source(self, dJ):
time_src = self._create_time_profile()
sources = []
mon_size = self.sim.fields.dft_monitor_size(
self._monitor.swigobj, self.volume.swigobj, self.component
)
dJ = dJ.astype(np.complex128)
if (
np.prod(mon_size) * self.num_freq != dJ.size
and np.prod(mon_size) * self.num_freq**2 != dJ.size
):
raise ValueError("The format of J is incorrect!")
# The objective function J is a vector. Each component corresponds to a frequency.
if np.prod(mon_size) * self.num_freq**2 == dJ.size and self.num_freq > 1:
dJ = np.sum(dJ, axis=1)
"""The adjoint solver requires the objective function
to be scalar valued with regard to objective arguments
and position, but the function may be vector valued
with regard to frequency. In this case, the Jacobian
will be of the form [F,F,...] where F is the number of
frequencies. Because of linearity, we can sum across the
second frequency dimension to calculate a frequency
scale factor for each point (rather than a scale vector).
"""
all_fouriersrcdata = self._monitor.swigobj.fourier_sourcedata(
self.volume.swigobj, self.component, self.sim.fields, dJ
)
for fourier_data in all_fouriersrcdata:
amp_arr = np.array(fourier_data.amp_arr).reshape(-1, self.num_freq)
scale = amp_arr * self._adj_src_scale(include_resolution=False)
if self.num_freq == 1:
sources += [
mp.IndexedSource(
time_src, fourier_data, scale[:, 0], not self.yee_grid
)
]
else:
src = FilteredSource(
time_src.frequency, self._frequencies, scale, self.sim.fields.dt
)
(num_basis, num_pts) = src.nodes.shape
for basis_i in range(num_basis):
sources += [
mp.IndexedSource(
src.time_src_bf[basis_i],
fourier_data,
src.nodes[basis_i],
not self.yee_grid,
)
]
return sources
def __call__(self):
"""The values of Fourier Fields at each frequency
Returns:
array of Fourier Fields with dimension k+1 where k is the dimension of self.volume
The first axis corresponds to the index of frequency, and the rest k axis are for
the spatial indices of points in the monitor
"""
self._eval = np.array(
[
self.sim.get_dft_array(self._monitor, self.component, i)
for i in range(self.num_freq)
]
)
return self._eval
class Near2FarFields(ObjectiveQuantity):
"""A differentiable near2far field transformation"""
def __init__(
self,
sim: mp.Simulation,
Near2FarRegions: List[mp.Near2FarRegion],
far_pts: List[mp.Vector3],
nperiods: Optional[int] = 1,
decimation_factor: Optional[int] = 0,
norm_near_fields: Optional[NearToFarData] = None,
):
"""Initialize an instance of differentiable Fourier fields instance.
Args:
sim: the Meep simulation object of the problem.
Near2FarRegions: List of mp.Near2FarRegion over which the near fields are collected
far_pts: list of far points at which fields are computed
nperiods: If nperiods > 1, sum of 2*nperiods+1 Bloch-periodic copies of near fields
is computed to approximate the lattice sum from Bloch periodic boundary condition.
Default is 1 (no sum).
decimation_factor: An integer used to specify the number of timesteps between updates of
the DFT fields. The default is 0, at which the value is automatically determined from the
Nyquist rate of the bandwidth-limited sources and the DFT monitor. It can be turned off
by setting it to 1.
norm_near_fields: the DFT fields obtained using `get_near2far_data` from
a previous normalization run. This is subtracted from the DFT fields
of this near2far monitor in order to improve the accuracy of the
reflectance measurement (i.e., the $S_{11}$ scattering parameter).
Default is None.
"""
super().__init__(sim)
self.Near2FarRegions = Near2FarRegions
self.far_pts = far_pts # list of far pts
self._nfar_pts = len(far_pts)
self.decimation_factor = decimation_factor
self.norm_near_fields = norm_near_fields
self.nperiods = nperiods
def register_monitors(self, frequencies):
self._frequencies = np.asarray(frequencies)
self._monitor = self.sim.add_near2far(
self._frequencies,
*self.Near2FarRegions,
nperiods=self.nperiods,
decimation_factor=self.decimation_factor,
)
if self.norm_near_fields is not None:
self.sim.load_minus_near2far_data(
self._monitor,
self.norm_near_fields,
)
return self._monitor
def place_adjoint_source(self, dJ):
time_src = self._create_time_profile()
sources = []
if dJ.ndim == 4:
dJ = np.sum(dJ, axis=0)
farpt_list = np.array([list(pi) for pi in self.far_pts]).flatten()
far_pt0 = self.far_pts[0]
far_pt_vec = py_v3_to_vec(
self.sim.dimensions,
far_pt0,
self.sim.is_cylindrical,
)
all_nearsrcdata = self._monitor.swigobj.near_sourcedata(
far_pt_vec, farpt_list, self._nfar_pts, dJ
)
for near_data in all_nearsrcdata:
cur_comp = near_data.near_fd_comp
amp_arr = np.array(near_data.amp_arr).reshape(-1, self.num_freq)
scale = amp_arr * self._adj_src_scale(include_resolution=False)
if self.num_freq == 1:
sources += [mp.IndexedSource(time_src, near_data, scale[:, 0])]
else:
src = FilteredSource(
time_src.frequency,
self._frequencies,
scale,
self.sim.fields.dt,
)
(num_basis, num_pts) = src.nodes.shape
for basis_i in range(num_basis):
sources += [
mp.IndexedSource(
src.time_src_bf[basis_i],
near_data,
src.nodes[basis_i],
)
]
return sources
def __call__(self):
"""The values of far fields at each points at each frequency
Returns:
3D array of far fields. The first axis is the index of far field points in self.far_pts;
the second axis is the index of frequency; and the third is the index of component in
[mp.Ex(mp.Er), mp.Ey(mp.Ep), mp.Ez, mp.Hx(mp.Hr), mp.Hy(mp.Hp), mp.Hz]
"""
self._eval = np.array(
[self.sim.get_farfield(self._monitor, far_pt) for far_pt in self.far_pts]
).reshape((self._nfar_pts, self.num_freq, 6))
return self._eval
class LDOS(ObjectiveQuantity):
"""A differentiable LDOS"""
def __init__(self, sim: mp.Simulation, **kwargs):
"""Initialize a differentiable LDOS instance
Args:
sim: the Meep simulation object of the problem.
"""
super().__init__(sim)
self.srckwarg = kwargs
def register_monitors(self, frequencies):
self._frequencies = np.asarray(frequencies)
self._forward_src = self.sim.sources
return
def place_adjoint_source(self, dJ):
time_src = self._create_time_profile()
if dJ.ndim == 2:
dJ = np.sum(dJ, axis=1)
dJ = dJ.flatten()
sources = []
forward_f_scale = np.array(
[self._ldos_scale / self._ldos_Jdata[k] for k in range(self.num_freq)]
)
if self._frequencies.size == 1:
amp = (dJ * self._adj_src_scale(False) * forward_f_scale)[0]
src = time_src
else:
scale = dJ * self._adj_src_scale(False) * forward_f_scale
src = FilteredSource(
time_src.frequency,
self._frequencies,
scale,
self.sim.fields.dt,
)
amp = 1
for forward_src_i in self._forward_src:
if isinstance(forward_src_i, mp.EigenModeSource):
src_i = mp.EigenModeSource(
src,
component=forward_src_i.component,
eig_kpoint=forward_src_i.eig_kpoint,
amplitude=amp,
eig_band=forward_src_i.eig_band,
size=forward_src_i.size,
center=forward_src_i.center,
**self.srckwarg,
)
else:
src_i = mp.Source(
src,
component=forward_src_i.component,
amplitude=amp,
size=forward_src_i.size,
center=forward_src_i.center,
**self.srckwarg,
)
if mp.is_electric(src_i.component):
src_i.amplitude *= -1
sources += [src_i]
return sources
def __call__(self):
"""The values of LDOS at each frequency
Returns:
1D array of LDOS corresponding to each of self.frequencies
"""
self._eval = self.sim.ldos_data
self._ldos_scale = self.sim.ldos_scale
self._ldos_Jdata = self.sim.ldos_Jdata
return np.array(self._eval)
|