1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
"""Topology optimization of the waveguide mode converter using
Meep's adjoint solver from A.M. Hammond et al., Optics Express,
Vol. 30, pp. 4467-4491 (2022). doi.org/10.1364/OE.442074
The worst-case optimization is based on minimizing the maximum
of {R,1-T} where R (reflectance) is $|S_{11}|^2$ for mode 1
and T (transmittance) is $|S_{21}|^2$ for mode 2 across six
different wavelengths. The optimization uses the method of moving
asymptotes (MMA) algorithm from NLopt. The minimum linewidth
constraint is based on A.M. Hammond et al., Optics Express,
Vol. 29, pp. 23916-23938, (2021). doi.org/10.1364/OE.431188
"""
import numpy as np
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
from autograd import numpy as npa, tensor_jacobian_product, grad
import nlopt
import meep as mp
import meep.adjoint as mpa
from typing import NamedTuple
resolution = 50 # pixels/μm
w = 0.4 # waveguide width
l = 3.0 # waveguide length (on each side of design region)
dpad = 0.6 # padding length above/below design region
dpml = 1.0 # PML thickness
dx = 1.6 # length of design region
dy = 1.6 # width of design region
sx = dpml + l + dx + l + dpml
sy = dpml + dpad + dy + dpad + dpml
cell_size = mp.Vector3(sx, sy, 0)
pml_layers = [mp.PML(thickness=dpml)]
# wavelengths for minimax optimization
wvls = (1.265, 1.270, 1.275, 1.285, 1.290, 1.295)
frqs = [1 / wvl for wvl in wvls]
minimum_length = 0.15 # minimum length scale (μm)
eta_i = 0.5 # blueprint design field thresholding point (between 0 and 1)
eta_e = 0.75 # erosion design field thresholding point (between 0 and 1)
eta_d = 1 - eta_e # dilation design field thresholding point (between 0 and 1)
filter_radius = mpa.get_conic_radius_from_eta_e(minimum_length, eta_e)
print(f"filter_radius:, {filter_radius:.6f}")
# pulsed source center frequency and bandwidth
wvl_min = 1.26
wvl_max = 1.30
frq_min = 1 / wvl_max
frq_max = 1 / wvl_min
fcen = 0.5 * (frq_min + frq_max)
df = frq_max - frq_min
eig_parity = mp.ODD_Z
src_pt = mp.Vector3(-0.5 * sx + dpml, 0, 0)
nSiO2 = 1.5
SiO2 = mp.Medium(index=nSiO2)
nSi = 3.5
Si = mp.Medium(index=nSi)
design_region_size = mp.Vector3(dx, dy, 0)
design_region_resolution = int(2 * resolution)
Nx = int(design_region_size.x * design_region_resolution) + 1
Ny = int(design_region_size.y * design_region_resolution) + 1
# impose a bit "mask" of thickness equal to the filter radius
# around the edges of the design region in order to prevent
# violations of the minimum feature size constraint.
x_g = np.linspace(
-design_region_size.x / 2,
design_region_size.x / 2,
Nx,
)
y_g = np.linspace(
-design_region_size.y / 2,
design_region_size.y / 2,
Ny,
)
X_g, Y_g = np.meshgrid(
x_g,
y_g,
sparse=True,
indexing="ij",
)
left_wg_mask = (X_g <= -design_region_size.x / 2 + filter_radius) & (
np.abs(Y_g) <= w / 2
)
right_wg_mask = (X_g >= design_region_size.x / 2 - filter_radius) & (
np.abs(Y_g) <= w / 2
)
Si_mask = left_wg_mask | right_wg_mask
border_mask = (
(X_g <= -design_region_size.x / 2 + filter_radius)
| (X_g >= design_region_size.x / 2 - filter_radius)
| (Y_g <= -design_region_size.y / 2 + filter_radius)
| (Y_g >= design_region_size.y / 2 - filter_radius)
)
SiO2_mask = border_mask.copy()
SiO2_mask[Si_mask] = False
refl_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * l)
tran_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * l)
stop_cond = mp.stop_when_fields_decayed(50, mp.Ez, refl_pt, 1e-8)
def mapping(x: np.ndarray, eta: float, beta: float) -> np.ndarray:
"""A differentiable mapping function which applies, in order,
the following sequence of transformations to the design weights:
(1) a bit mask for the boundary pixels, (2) convolution with a
conic filter, and (3) projection via a hyperbolic tangent (if
necessary).
Args:
x: design weights as a 1d array of size Nx*Ny.
eta: erosion/dilation parameter for the projection.
beta: bias parameter for the projection. A value of 0 is no projection.
Returns:
The mapped design weights as a 1d array.
"""
x = npa.where(
Si_mask.flatten(),
1,
npa.where(
SiO2_mask.flatten(),
0,
x,
),
)
filtered_field = mpa.conic_filter(
x,
filter_radius,
design_region_size.x,
design_region_size.y,
design_region_resolution,
)
if beta == 0:
return filtered_field.flatten()
else:
projected_field = mpa.tanh_projection(
filtered_field,
beta,
eta,
)
return projected_field.flatten()
def f(x: np.ndarray, grad: np.ndarray) -> float:
"""Objective function for the epigraph formulation.
Args:
x: 1d array of size 1+Nx*Ny containing epigraph variable (first element)
and design weights (remaining Nx*Ny elements).
grad: the gradient as a 1d array of size 1+Nx*Ny modified in place.
Returns:
The epigraph variable (a scalar).
"""
t = x[0] # epigraph variable
v = x[1:] # design weights
if grad.size > 0:
grad[0] = 1
grad[1:] = 0
return t
def c(
result: np.ndarray,
x: np.ndarray,
gradient: np.ndarray,
eta: float,
beta: float,
use_epsavg: bool,
):
"""Constraint function for the epigraph formulation.
Args:
result: the result of the function evaluation modified in place.
x: 1d array of size 1+Nx*Ny containing epigraph variable (first
element) and design weights (remaining Nx*Ny elements).
gradient: the Jacobian matrix with dimensions (1+Nx*Ny,
2*num. wavelengths) modified in place.
eta: erosion/dilation parameter for projection.
beta: bias parameter for projection.
use_epsavg: whether to use subpixel smoothing.
"""
t = x[0] # epigraph variable
v = x[1:] # design weights
f0, dJ_du = opt([mapping(v, eta, 0 if use_epsavg else beta)])
f0_reflection = f0[0]
f0_transmission = f0[1]
f0_merged = np.concatenate((f0_reflection, f0_transmission))
f0_merged_str = "[" + ",".join(str(ff) for ff in f0_merged) + "]"
dJ_du_reflection = dJ_du[0]
dJ_du_transmission = dJ_du[1]
nfrq = len(frqs)
my_grad = np.zeros((Nx * Ny, 2 * nfrq))
my_grad[:, :nfrq] = dJ_du_reflection
my_grad[:, nfrq:] = dJ_du_transmission
# backpropagate the gradients through mapping function
for k in range(2 * nfrq):
my_grad[:, k] = tensor_jacobian_product(mapping, 0)(
v,
eta,
beta,
my_grad[:, k],
)
if gradient.size > 0:
gradient[:, 0] = -1 # gradient w.r.t. epigraph variable ("t")
gradient[:, 1:] = my_grad.T # gradient w.r.t. each frequency objective
result[:] = np.real(f0_merged) - t
objfunc_history.append(np.real(f0_merged))
epivar_history.append(t)
print(
f"iteration:, {cur_iter[0]:3d}, eta: {eta}, beta: {beta:2d}, "
f"t: {t:.5f}, obj. func.: {f0_merged_str}"
)
cur_iter[0] = cur_iter[0] + 1
def glc(result: np.ndarray, x: np.ndarray, gradient: np.ndarray, beta: float) -> float:
"""Constraint function for the minimum linewidth.
Args:
result: the result of the function evaluation modified in place.
x: 1d array of size 1+Nx*Ny containing epigraph variable (first
element) and design weights (remaining elements).
gradient: the Jacobian matrix with dimensions (1+Nx*Ny,
num. wavelengths) modified in place.
beta: bias parameter for projection.
Returns:
The value of the constraint function (a scalar).
"""
t = x[0] # dummy parameter
v = x[1:] # design parameters
a1 = 1e-3 # hyper parameter (primary)
b1 = 0 # hyper parameter (secondary)
gradient[:, 0] = -a1
filter_f = lambda a: mpa.conic_filter(
a.reshape(Nx, Ny),
filter_radius,
design_region_size.x,
design_region_size.y,
design_region_resolution,
)
threshold_f = lambda a: mpa.tanh_projection(a, beta, eta_i)
# hyper parameter (constant factor and exponent)
c0 = 1e7 * (filter_radius * 1 / resolution) ** 4
M1 = lambda a: mpa.constraint_solid(a, c0, eta_e, filter_f, threshold_f, 1)
M2 = lambda a: mpa.constraint_void(a, c0, eta_d, filter_f, threshold_f, 1)
g1 = grad(M1)(v)
g2 = grad(M2)(v)
result[0] = M1(v) - a1 * t - b1
result[1] = M2(v) - a1 * t - b1
gradient[0, 1:] = g1.flatten()
gradient[1, 1:] = g2.flatten()
t1 = (M1(v) - b1) / a1
t2 = (M2(v) - b1) / a1
print(f"glc:, {result[0]}, {result[1]}, {t1}, {t2}")
return max(t1, t2)
def straight_waveguide() -> (np.ndarray, NamedTuple):
"""Computes the DFT fields from the mode source in a straight waveguide
for use as normalization of the reflectance measurement during the
optimization.
Returns:
A 2-tuple consisting of a 1d array of DFT fields and DFT fields object
returned by `meep.get_flux_data`.
"""
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=df),
size=mp.Vector3(0, sy, 0),
center=src_pt,
eig_band=1,
eig_parity=eig_parity,
)
]
geometry = [
mp.Block(
size=mp.Vector3(mp.inf, w, mp.inf),
center=mp.Vector3(),
material=Si,
)
]
sim = mp.Simulation(
resolution=resolution,
default_material=SiO2,
cell_size=cell_size,
sources=sources,
geometry=geometry,
boundary_layers=pml_layers,
k_point=mp.Vector3(),
)
refl_mon = sim.add_mode_monitor(
frqs,
mp.ModeRegion(center=refl_pt, size=mp.Vector3(0, sy, 0)),
yee_grid=True,
)
sim.run(until_after_sources=stop_cond)
res = sim.get_eigenmode_coefficients(
refl_mon,
[1],
eig_parity=eig_parity,
)
coeffs = res.alpha
input_flux = np.abs(coeffs[0, :, 0]) ** 2
input_flux_data = sim.get_flux_data(refl_mon)
return input_flux, input_flux_data
def mode_converter_optimization(
input_flux: np.ndarray,
input_flux_data: NamedTuple,
use_damping: bool,
use_epsavg: bool,
beta: float,
) -> mpa.OptimizationProblem:
"""Sets up the adjoint optimization of the waveguide mode converter.
Args:
input_flux: 1d array of DFT fields from normalization run.
input_flux_data: DFT fields object returned by `meep.get_flux_data`.
use_damping: whether to use the damping feature of `MaterialGrid`.
use_epsavg: whether to use subpixel smoothing in `MaterialGrid`.
Returns:
A `meep.adjoint.OptimizationProblem` class object.
"""
matgrid = mp.MaterialGrid(
mp.Vector3(Nx, Ny, 0),
SiO2,
Si,
weights=np.ones((Nx, Ny)),
beta=beta if use_epsavg else 0,
do_averaging=True if use_epsavg else False,
damping=0.02 * 2 * np.pi * fcen if use_damping else 0,
)
matgrid_region = mpa.DesignRegion(
matgrid,
volume=mp.Volume(
center=mp.Vector3(),
size=mp.Vector3(design_region_size.x, design_region_size.y, mp.inf),
),
)
matgrid_geometry = [
mp.Block(
center=matgrid_region.center,
size=matgrid_region.size,
material=matgrid,
)
]
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(mp.inf, w, mp.inf),
material=Si,
)
]
geometry += matgrid_geometry
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=df),
size=mp.Vector3(0, sy, 0),
center=src_pt,
eig_band=1,
eig_parity=eig_parity,
),
]
sim = mp.Simulation(
resolution=resolution,
default_material=SiO2,
cell_size=cell_size,
sources=sources,
geometry=geometry,
boundary_layers=pml_layers,
k_point=mp.Vector3(),
)
obj_list = [
mpa.EigenmodeCoefficient(
sim,
mp.Volume(
center=refl_pt,
size=mp.Vector3(0, sy, 0),
),
1,
forward=False,
eig_parity=eig_parity,
subtracted_dft_fields=input_flux_data,
),
mpa.EigenmodeCoefficient(
sim,
mp.Volume(
center=tran_pt,
size=mp.Vector3(0, sy, 0),
),
2,
eig_parity=eig_parity,
),
]
def J1(refl_mon, tran_mon):
return npa.power(npa.abs(refl_mon), 2) / input_flux
def J2(refl_mon, tran_mon):
return 1 - npa.power(npa.abs(tran_mon), 2) / input_flux
opt = mpa.OptimizationProblem(
simulation=sim,
objective_functions=[J1, J2],
objective_arguments=obj_list,
design_regions=[matgrid_region],
frequencies=frqs,
)
return opt
if __name__ == "__main__":
input_flux, input_flux_data = straight_waveguide()
algorithm = nlopt.LD_MMA
# number of design parameters
n = Nx * Ny
# initial design parameters
x = np.ones((n,)) * 0.5
x[Si_mask.flatten()] = 1.0 # set the edges of waveguides to silicon
x[SiO2_mask.flatten()] = 0.0 # set the other edges to SiO2
# lower and upper bounds for design weights
lb = np.zeros((n,))
lb[Si_mask.flatten()] = 1.0
ub = np.ones((n,))
ub[SiO2_mask.flatten()] = 0.0
# insert epigraph variable initial value (arbitrary) and bounds into the
# design array. the actual value is determined by the objective and
# constraint functions below.
x = np.insert(x, 0, 1.2)
lb = np.insert(lb, 0, -np.inf)
ub = np.insert(ub, 0, +np.inf)
objfunc_history = []
epivar_history = []
cur_iter = [0]
beta_thresh = 64 # threshold beta above which to use subpixel smoothing
betas = [8, 16, 32, 64, 128, 256]
max_evals = [80, 80, 100, 120, 120, 100]
tol_epi = np.array([1e-4] * 2 * len(frqs)) # R, 1-T
tol_lw = np.array([1e-8] * 2) # line width, line spacing
for beta, max_eval in zip(betas, max_evals):
solver = nlopt.opt(algorithm, n + 1)
solver.set_lower_bounds(lb)
solver.set_upper_bounds(ub)
solver.set_min_objective(f)
solver.set_maxeval(max_eval)
solver.set_param("dual_ftol_rel", 1e-7)
solver.add_inequality_mconstraint(
lambda rr, xx, gg: c(
rr,
xx,
gg,
eta_i,
beta,
False if beta < beta_thresh else True,
),
tol_epi,
)
solver.set_param("verbosity", 1)
opt = mode_converter_optimization(
input_flux,
input_flux_data,
True, # use_damping
False if beta < beta_thresh else True, # use_epsavg
beta,
)
# apply the minimum linewidth constraint
# only in the final epoch to an initial
# binary design from the previous epoch.
if beta == betas[-1]:
res = np.zeros(2)
grd = np.zeros((2, n + 1))
t = glc(res, x, grd, beta)
solver.add_inequality_mconstraint(
lambda rr, xx, gg: glc(
rr,
xx,
gg,
beta,
),
tol_lw,
)
# execute a single forward run before the start of each
# epoch and manually set the initial epigraph variable to
# slightly larger than the largest value of the objective
# function over the six wavelengths and the lengthscale
# constraint (final epoch only).
t0 = opt(
[
mapping(
x[1:],
eta_i,
beta if beta < beta_thresh else 0,
),
],
need_gradient=False,
)
t0 = np.concatenate((t0[0][0], t0[0][1]))
t0_str = "[" + ",".join(str(tt) for tt in t0) + "]"
x[0] = np.amax(t0)
x[0] = 1.05 * (max(x[0], t) if beta == betas[-1] else x[0])
print(f"data:, {beta}, {t0_str}, {x[0]}")
x[:] = solver.optimize(x)
optimal_design_weights = mapping(
x[1:],
eta_i,
beta,
).reshape(Nx, Ny)
# save the unmapped weights and a bitmap image
# of the design weights at the end of each epoch.
fig, ax = plt.subplots()
ax.imshow(
optimal_design_weights,
cmap="binary",
interpolation="none",
)
ax.set_axis_off()
if mp.am_master():
fig.savefig(
f"optimal_design_beta{beta}.png",
dpi=150,
bbox_inches="tight",
)
# save the final (unmapped) design as a 2d array in CSV format
np.savetxt(
f"unmapped_design_weights_beta{beta}.csv",
x[1:].reshape(Nx, Ny),
fmt="%4.2f",
delimiter=",",
)
# save all the important optimization parameters and output
# as separate arrays in a single file for post processing.
with open("optimal_design.npz", "wb") as fl:
np.savez(
fl,
Nx=Nx,
Ny=Ny,
design_region_size=(dx, dy),
design_region_resolution=design_region_resolution,
betas=betas,
max_eval=max_eval,
objfunc_history=objfunc_history,
epivar_history=epivar_history,
t=x[0],
unmapped_design_weights=x[1:],
minimum_length=minimum_length,
optimal_design_weights=optimal_design_weights,
)
|