File: mode_converter.py

package info (click to toggle)
meep-mpi-default 1.29.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 79,148 kB
  • sloc: cpp: 32,541; python: 31,061; lisp: 1,225; makefile: 516; sh: 249; ansic: 131; javascript: 5
file content (618 lines) | stat: -rw-r--r-- 18,062 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
"""Topology optimization of the waveguide mode converter using
   Meep's adjoint solver from A.M. Hammond et al., Optics Express,
   Vol. 30, pp. 4467-4491 (2022). doi.org/10.1364/OE.442074

The worst-case optimization is based on minimizing the maximum
of {R,1-T} where R (reflectance) is $|S_{11}|^2$ for mode 1
and T (transmittance) is $|S_{21}|^2$ for mode 2 across six
different wavelengths. The optimization uses the method of moving
asymptotes (MMA) algorithm from NLopt. The minimum linewidth
constraint is based on A.M. Hammond et al., Optics Express,
Vol. 29, pp. 23916-23938, (2021). doi.org/10.1364/OE.431188
"""

import numpy as np
import matplotlib

matplotlib.use("agg")
import matplotlib.pyplot as plt
from autograd import numpy as npa, tensor_jacobian_product, grad
import nlopt
import meep as mp
import meep.adjoint as mpa
from typing import NamedTuple

resolution = 50  # pixels/μm

w = 0.4  # waveguide width
l = 3.0  # waveguide length (on each side of design region)
dpad = 0.6  # padding length above/below design region
dpml = 1.0  # PML thickness
dx = 1.6  # length of design region
dy = 1.6  # width of design region

sx = dpml + l + dx + l + dpml
sy = dpml + dpad + dy + dpad + dpml
cell_size = mp.Vector3(sx, sy, 0)

pml_layers = [mp.PML(thickness=dpml)]

# wavelengths for minimax optimization
wvls = (1.265, 1.270, 1.275, 1.285, 1.290, 1.295)
frqs = [1 / wvl for wvl in wvls]

minimum_length = 0.15  # minimum length scale (μm)
eta_i = 0.5  # blueprint design field thresholding point (between 0 and 1)
eta_e = 0.75  # erosion design field thresholding point (between 0 and 1)
eta_d = 1 - eta_e  # dilation design field thresholding point (between 0 and 1)
filter_radius = mpa.get_conic_radius_from_eta_e(minimum_length, eta_e)
print(f"filter_radius:, {filter_radius:.6f}")

# pulsed source center frequency and bandwidth
wvl_min = 1.26
wvl_max = 1.30
frq_min = 1 / wvl_max
frq_max = 1 / wvl_min
fcen = 0.5 * (frq_min + frq_max)
df = frq_max - frq_min

eig_parity = mp.ODD_Z
src_pt = mp.Vector3(-0.5 * sx + dpml, 0, 0)

nSiO2 = 1.5
SiO2 = mp.Medium(index=nSiO2)
nSi = 3.5
Si = mp.Medium(index=nSi)

design_region_size = mp.Vector3(dx, dy, 0)
design_region_resolution = int(2 * resolution)
Nx = int(design_region_size.x * design_region_resolution) + 1
Ny = int(design_region_size.y * design_region_resolution) + 1

# impose a bit "mask" of thickness equal to the filter radius
# around the edges of the design region in order to prevent
# violations of the minimum feature size constraint.

x_g = np.linspace(
    -design_region_size.x / 2,
    design_region_size.x / 2,
    Nx,
)
y_g = np.linspace(
    -design_region_size.y / 2,
    design_region_size.y / 2,
    Ny,
)
X_g, Y_g = np.meshgrid(
    x_g,
    y_g,
    sparse=True,
    indexing="ij",
)

left_wg_mask = (X_g <= -design_region_size.x / 2 + filter_radius) & (
    np.abs(Y_g) <= w / 2
)
right_wg_mask = (X_g >= design_region_size.x / 2 - filter_radius) & (
    np.abs(Y_g) <= w / 2
)
Si_mask = left_wg_mask | right_wg_mask

border_mask = (
    (X_g <= -design_region_size.x / 2 + filter_radius)
    | (X_g >= design_region_size.x / 2 - filter_radius)
    | (Y_g <= -design_region_size.y / 2 + filter_radius)
    | (Y_g >= design_region_size.y / 2 - filter_radius)
)
SiO2_mask = border_mask.copy()
SiO2_mask[Si_mask] = False

refl_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * l)
tran_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * l)

stop_cond = mp.stop_when_fields_decayed(50, mp.Ez, refl_pt, 1e-8)


def mapping(x: np.ndarray, eta: float, beta: float) -> np.ndarray:
    """A differentiable mapping function which applies, in order,
       the following sequence of transformations to the design weights:
       (1) a bit mask for the boundary pixels, (2) convolution with a
       conic filter, and (3) projection via a hyperbolic tangent (if
       necessary).

    Args:
      x: design weights as a 1d array of size Nx*Ny.
      eta: erosion/dilation parameter for the projection.
      beta: bias parameter for the projection. A value of 0 is no projection.

    Returns:
      The mapped design weights as a 1d array.
    """
    x = npa.where(
        Si_mask.flatten(),
        1,
        npa.where(
            SiO2_mask.flatten(),
            0,
            x,
        ),
    )

    filtered_field = mpa.conic_filter(
        x,
        filter_radius,
        design_region_size.x,
        design_region_size.y,
        design_region_resolution,
    )

    if beta == 0:
        return filtered_field.flatten()

    else:
        projected_field = mpa.tanh_projection(
            filtered_field,
            beta,
            eta,
        )

        return projected_field.flatten()


def f(x: np.ndarray, grad: np.ndarray) -> float:
    """Objective function for the epigraph formulation.

    Args:
      x: 1d array of size 1+Nx*Ny containing epigraph variable (first element)
         and design weights (remaining Nx*Ny elements).
      grad: the gradient as a 1d array of size 1+Nx*Ny modified in place.

    Returns:
      The epigraph variable (a scalar).
    """
    t = x[0]  # epigraph variable
    v = x[1:]  # design weights
    if grad.size > 0:
        grad[0] = 1
        grad[1:] = 0
    return t


def c(
    result: np.ndarray,
    x: np.ndarray,
    gradient: np.ndarray,
    eta: float,
    beta: float,
    use_epsavg: bool,
):
    """Constraint function for the epigraph formulation.

    Args:
      result: the result of the function evaluation modified in place.
      x: 1d array of size 1+Nx*Ny containing epigraph variable (first
         element) and design weights (remaining Nx*Ny elements).
      gradient: the Jacobian matrix with dimensions (1+Nx*Ny,
                2*num. wavelengths) modified in place.
      eta: erosion/dilation parameter for projection.
      beta: bias parameter for projection.
      use_epsavg: whether to use subpixel smoothing.
    """
    t = x[0]  # epigraph variable
    v = x[1:]  # design weights

    f0, dJ_du = opt([mapping(v, eta, 0 if use_epsavg else beta)])

    f0_reflection = f0[0]
    f0_transmission = f0[1]
    f0_merged = np.concatenate((f0_reflection, f0_transmission))
    f0_merged_str = "[" + ",".join(str(ff) for ff in f0_merged) + "]"

    dJ_du_reflection = dJ_du[0]
    dJ_du_transmission = dJ_du[1]
    nfrq = len(frqs)
    my_grad = np.zeros((Nx * Ny, 2 * nfrq))
    my_grad[:, :nfrq] = dJ_du_reflection
    my_grad[:, nfrq:] = dJ_du_transmission

    # backpropagate the gradients through mapping function
    for k in range(2 * nfrq):
        my_grad[:, k] = tensor_jacobian_product(mapping, 0)(
            v,
            eta,
            beta,
            my_grad[:, k],
        )

    if gradient.size > 0:
        gradient[:, 0] = -1  # gradient w.r.t. epigraph variable ("t")
        gradient[:, 1:] = my_grad.T  # gradient w.r.t. each frequency objective

    result[:] = np.real(f0_merged) - t

    objfunc_history.append(np.real(f0_merged))
    epivar_history.append(t)

    print(
        f"iteration:, {cur_iter[0]:3d}, eta: {eta}, beta: {beta:2d}, "
        f"t: {t:.5f}, obj. func.: {f0_merged_str}"
    )

    cur_iter[0] = cur_iter[0] + 1


def glc(result: np.ndarray, x: np.ndarray, gradient: np.ndarray, beta: float) -> float:
    """Constraint function for the minimum linewidth.

    Args:
      result: the result of the function evaluation modified in place.
      x: 1d array of size 1+Nx*Ny containing epigraph variable (first
         element) and design weights (remaining elements).
      gradient: the Jacobian matrix with dimensions (1+Nx*Ny,
                num. wavelengths) modified in place.
      beta: bias parameter for projection.

    Returns:
      The value of the constraint function (a scalar).
    """
    t = x[0]  # dummy parameter
    v = x[1:]  # design parameters
    a1 = 1e-3  # hyper parameter (primary)
    b1 = 0  # hyper parameter (secondary)
    gradient[:, 0] = -a1

    filter_f = lambda a: mpa.conic_filter(
        a.reshape(Nx, Ny),
        filter_radius,
        design_region_size.x,
        design_region_size.y,
        design_region_resolution,
    )
    threshold_f = lambda a: mpa.tanh_projection(a, beta, eta_i)

    # hyper parameter (constant factor and exponent)
    c0 = 1e7 * (filter_radius * 1 / resolution) ** 4

    M1 = lambda a: mpa.constraint_solid(a, c0, eta_e, filter_f, threshold_f, 1)
    M2 = lambda a: mpa.constraint_void(a, c0, eta_d, filter_f, threshold_f, 1)

    g1 = grad(M1)(v)
    g2 = grad(M2)(v)

    result[0] = M1(v) - a1 * t - b1
    result[1] = M2(v) - a1 * t - b1

    gradient[0, 1:] = g1.flatten()
    gradient[1, 1:] = g2.flatten()

    t1 = (M1(v) - b1) / a1
    t2 = (M2(v) - b1) / a1

    print(f"glc:, {result[0]}, {result[1]}, {t1}, {t2}")

    return max(t1, t2)


def straight_waveguide() -> (np.ndarray, NamedTuple):
    """Computes the DFT fields from the mode source in a straight waveguide
       for use as normalization of the reflectance measurement during the
       optimization.

    Returns:
      A 2-tuple consisting of a 1d array of DFT fields and DFT fields object
      returned by `meep.get_flux_data`.
    """
    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=df),
            size=mp.Vector3(0, sy, 0),
            center=src_pt,
            eig_band=1,
            eig_parity=eig_parity,
        )
    ]

    geometry = [
        mp.Block(
            size=mp.Vector3(mp.inf, w, mp.inf),
            center=mp.Vector3(),
            material=Si,
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        default_material=SiO2,
        cell_size=cell_size,
        sources=sources,
        geometry=geometry,
        boundary_layers=pml_layers,
        k_point=mp.Vector3(),
    )

    refl_mon = sim.add_mode_monitor(
        frqs,
        mp.ModeRegion(center=refl_pt, size=mp.Vector3(0, sy, 0)),
        yee_grid=True,
    )

    sim.run(until_after_sources=stop_cond)

    res = sim.get_eigenmode_coefficients(
        refl_mon,
        [1],
        eig_parity=eig_parity,
    )

    coeffs = res.alpha
    input_flux = np.abs(coeffs[0, :, 0]) ** 2
    input_flux_data = sim.get_flux_data(refl_mon)

    return input_flux, input_flux_data


def mode_converter_optimization(
    input_flux: np.ndarray,
    input_flux_data: NamedTuple,
    use_damping: bool,
    use_epsavg: bool,
    beta: float,
) -> mpa.OptimizationProblem:
    """Sets up the adjoint optimization of the waveguide mode converter.

    Args:
      input_flux: 1d array of DFT fields from normalization run.
      input_flux_data: DFT fields object returned by `meep.get_flux_data`.
      use_damping: whether to use the damping feature of `MaterialGrid`.
      use_epsavg: whether to use subpixel smoothing in `MaterialGrid`.

    Returns:
      A `meep.adjoint.OptimizationProblem` class object.
    """
    matgrid = mp.MaterialGrid(
        mp.Vector3(Nx, Ny, 0),
        SiO2,
        Si,
        weights=np.ones((Nx, Ny)),
        beta=beta if use_epsavg else 0,
        do_averaging=True if use_epsavg else False,
        damping=0.02 * 2 * np.pi * fcen if use_damping else 0,
    )

    matgrid_region = mpa.DesignRegion(
        matgrid,
        volume=mp.Volume(
            center=mp.Vector3(),
            size=mp.Vector3(design_region_size.x, design_region_size.y, mp.inf),
        ),
    )

    matgrid_geometry = [
        mp.Block(
            center=matgrid_region.center,
            size=matgrid_region.size,
            material=matgrid,
        )
    ]

    geometry = [
        mp.Block(
            center=mp.Vector3(),
            size=mp.Vector3(mp.inf, w, mp.inf),
            material=Si,
        )
    ]

    geometry += matgrid_geometry

    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=df),
            size=mp.Vector3(0, sy, 0),
            center=src_pt,
            eig_band=1,
            eig_parity=eig_parity,
        ),
    ]

    sim = mp.Simulation(
        resolution=resolution,
        default_material=SiO2,
        cell_size=cell_size,
        sources=sources,
        geometry=geometry,
        boundary_layers=pml_layers,
        k_point=mp.Vector3(),
    )

    obj_list = [
        mpa.EigenmodeCoefficient(
            sim,
            mp.Volume(
                center=refl_pt,
                size=mp.Vector3(0, sy, 0),
            ),
            1,
            forward=False,
            eig_parity=eig_parity,
            subtracted_dft_fields=input_flux_data,
        ),
        mpa.EigenmodeCoefficient(
            sim,
            mp.Volume(
                center=tran_pt,
                size=mp.Vector3(0, sy, 0),
            ),
            2,
            eig_parity=eig_parity,
        ),
    ]

    def J1(refl_mon, tran_mon):
        return npa.power(npa.abs(refl_mon), 2) / input_flux

    def J2(refl_mon, tran_mon):
        return 1 - npa.power(npa.abs(tran_mon), 2) / input_flux

    opt = mpa.OptimizationProblem(
        simulation=sim,
        objective_functions=[J1, J2],
        objective_arguments=obj_list,
        design_regions=[matgrid_region],
        frequencies=frqs,
    )

    return opt


if __name__ == "__main__":
    input_flux, input_flux_data = straight_waveguide()

    algorithm = nlopt.LD_MMA

    # number of design parameters
    n = Nx * Ny

    # initial design parameters
    x = np.ones((n,)) * 0.5
    x[Si_mask.flatten()] = 1.0  # set the edges of waveguides to silicon
    x[SiO2_mask.flatten()] = 0.0  # set the other edges to SiO2

    # lower and upper bounds for design weights
    lb = np.zeros((n,))
    lb[Si_mask.flatten()] = 1.0
    ub = np.ones((n,))
    ub[SiO2_mask.flatten()] = 0.0

    # insert epigraph variable initial value (arbitrary) and bounds into the
    # design array. the actual value is determined by the objective and
    # constraint functions below.
    x = np.insert(x, 0, 1.2)
    lb = np.insert(lb, 0, -np.inf)
    ub = np.insert(ub, 0, +np.inf)

    objfunc_history = []
    epivar_history = []
    cur_iter = [0]

    beta_thresh = 64  # threshold beta above which to use subpixel smoothing
    betas = [8, 16, 32, 64, 128, 256]
    max_evals = [80, 80, 100, 120, 120, 100]
    tol_epi = np.array([1e-4] * 2 * len(frqs))  # R, 1-T
    tol_lw = np.array([1e-8] * 2)  # line width, line spacing

    for beta, max_eval in zip(betas, max_evals):
        solver = nlopt.opt(algorithm, n + 1)
        solver.set_lower_bounds(lb)
        solver.set_upper_bounds(ub)
        solver.set_min_objective(f)
        solver.set_maxeval(max_eval)
        solver.set_param("dual_ftol_rel", 1e-7)
        solver.add_inequality_mconstraint(
            lambda rr, xx, gg: c(
                rr,
                xx,
                gg,
                eta_i,
                beta,
                False if beta < beta_thresh else True,
            ),
            tol_epi,
        )
        solver.set_param("verbosity", 1)

        opt = mode_converter_optimization(
            input_flux,
            input_flux_data,
            True,  # use_damping
            False if beta < beta_thresh else True,  # use_epsavg
            beta,
        )

        # apply the minimum linewidth constraint
        # only in the final epoch to an initial
        # binary design from the previous epoch.
        if beta == betas[-1]:
            res = np.zeros(2)
            grd = np.zeros((2, n + 1))
            t = glc(res, x, grd, beta)
            solver.add_inequality_mconstraint(
                lambda rr, xx, gg: glc(
                    rr,
                    xx,
                    gg,
                    beta,
                ),
                tol_lw,
            )

        # execute a single forward run before the start of each
        # epoch and manually set the initial epigraph variable to
        # slightly larger than the largest value of the objective
        # function over the six wavelengths and the lengthscale
        # constraint (final epoch only).
        t0 = opt(
            [
                mapping(
                    x[1:],
                    eta_i,
                    beta if beta < beta_thresh else 0,
                ),
            ],
            need_gradient=False,
        )
        t0 = np.concatenate((t0[0][0], t0[0][1]))
        t0_str = "[" + ",".join(str(tt) for tt in t0) + "]"
        x[0] = np.amax(t0)
        x[0] = 1.05 * (max(x[0], t) if beta == betas[-1] else x[0])
        print(f"data:, {beta}, {t0_str}, {x[0]}")

        x[:] = solver.optimize(x)

        optimal_design_weights = mapping(
            x[1:],
            eta_i,
            beta,
        ).reshape(Nx, Ny)

        # save the unmapped weights and a bitmap image
        # of the design weights at the end of each epoch.
        fig, ax = plt.subplots()
        ax.imshow(
            optimal_design_weights,
            cmap="binary",
            interpolation="none",
        )
        ax.set_axis_off()
        if mp.am_master():
            fig.savefig(
                f"optimal_design_beta{beta}.png",
                dpi=150,
                bbox_inches="tight",
            )
            # save the final (unmapped) design as a 2d array in CSV format
            np.savetxt(
                f"unmapped_design_weights_beta{beta}.csv",
                x[1:].reshape(Nx, Ny),
                fmt="%4.2f",
                delimiter=",",
            )

    # save all the important optimization parameters and output
    # as separate arrays in a single file for post processing.
    with open("optimal_design.npz", "wb") as fl:
        np.savez(
            fl,
            Nx=Nx,
            Ny=Ny,
            design_region_size=(dx, dy),
            design_region_resolution=design_region_resolution,
            betas=betas,
            max_eval=max_eval,
            objfunc_history=objfunc_history,
            epivar_history=epivar_history,
            t=x[0],
            unmapped_design_weights=x[1:],
            minimum_length=minimum_length,
            optimal_design_weights=optimal_design_weights,
        )