1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
import math
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
resolution = 50 # pixels/um
sxy = 4
dpml = 1
cell = mp.Vector3(sxy + 2 * dpml, sxy + 2 * dpml)
pml_layers = [mp.PML(dpml)]
fcen = 1.0
df = 0.4
src_cmpt = mp.Ex
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=df), center=mp.Vector3(), component=src_cmpt
)
]
if src_cmpt == mp.Ex:
symmetries = [mp.Mirror(mp.X, phase=-1), mp.Mirror(mp.Y, phase=+1)]
elif src_cmpt == mp.Ey:
symmetries = [mp.Mirror(mp.X, phase=+1), mp.Mirror(mp.Y, phase=-1)]
elif src_cmpt == mp.Ez:
symmetries = [mp.Mirror(mp.X, phase=+1), mp.Mirror(mp.Y, phase=+1)]
else:
symmetries = []
sim = mp.Simulation(
cell_size=cell,
resolution=resolution,
sources=sources,
symmetries=symmetries,
boundary_layers=pml_layers,
)
nearfield_box = sim.add_near2far(
fcen,
0,
1,
mp.Near2FarRegion(center=mp.Vector3(0, +0.5 * sxy), size=mp.Vector3(sxy, 0)),
mp.Near2FarRegion(
center=mp.Vector3(0, -0.5 * sxy), size=mp.Vector3(sxy, 0), weight=-1
),
mp.Near2FarRegion(center=mp.Vector3(+0.5 * sxy, 0), size=mp.Vector3(0, sxy)),
mp.Near2FarRegion(
center=mp.Vector3(-0.5 * sxy, 0), size=mp.Vector3(0, sxy), weight=-1
),
)
flux_box = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(center=mp.Vector3(0, +0.5 * sxy), size=mp.Vector3(sxy, 0)),
mp.FluxRegion(center=mp.Vector3(0, -0.5 * sxy), size=mp.Vector3(sxy, 0), weight=-1),
mp.FluxRegion(center=mp.Vector3(+0.5 * sxy, 0), size=mp.Vector3(0, sxy)),
mp.FluxRegion(center=mp.Vector3(-0.5 * sxy, 0), size=mp.Vector3(0, sxy), weight=-1),
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
near_flux = mp.get_fluxes(flux_box)[0]
# half side length of far-field square box OR radius of far-field circle
r = 1000 / fcen
# resolution of far fields (points/μm)
res_ff = 1
far_flux_box = (
nearfield_box.flux(
mp.Y, mp.Volume(center=mp.Vector3(y=r), size=mp.Vector3(2 * r)), res_ff
)[0]
- nearfield_box.flux(
mp.Y, mp.Volume(center=mp.Vector3(y=-r), size=mp.Vector3(2 * r)), res_ff
)[0]
+ nearfield_box.flux(
mp.X, mp.Volume(center=mp.Vector3(r), size=mp.Vector3(y=2 * r)), res_ff
)[0]
- nearfield_box.flux(
mp.X, mp.Volume(center=mp.Vector3(-r), size=mp.Vector3(y=2 * r)), res_ff
)[0]
)
npts = 100 # number of points in [0,2*pi) range of angles
angles = 2 * math.pi / npts * np.arange(npts)
E = np.zeros((npts, 3), dtype=np.complex128)
H = np.zeros((npts, 3), dtype=np.complex128)
for n in range(npts):
ff = sim.get_farfield(
nearfield_box, mp.Vector3(r * math.cos(angles[n]), r * math.sin(angles[n]))
)
E[n, :] = [ff[j] for j in range(3)]
H[n, :] = [ff[j + 3] for j in range(3)]
Px = np.real(np.conj(E[:, 1]) * H[:, 2] - np.conj(E[:, 2]) * H[:, 1])
Py = np.real(np.conj(E[:, 2]) * H[:, 0] - np.conj(E[:, 0]) * H[:, 2])
Pr = np.sqrt(np.square(Px) + np.square(Py))
# integrate the radial flux over the circle circumference
far_flux_circle = np.sum(Pr) * 2 * np.pi * r / len(Pr)
print(f"flux:, {near_flux:.6f}, {far_flux_box:.6f}, {far_flux_circle:.6f}")
# Analytic formulas for the radiation pattern as the Poynting vector
# of an electric dipole in vacuum. From Section 4.2 "Infinitesimal Dipole"
# of Antenna Theory: Analysis and Design, 4th Edition (2016) by C. Balanis.
if src_cmpt == mp.Ex:
flux_theory = np.sin(angles) ** 2
elif src_cmpt == mp.Ey:
flux_theory = np.cos(angles) ** 2
elif src_cmpt == mp.Ez:
flux_theory = np.ones((npts,))
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6))
ax.plot(angles, Pr / max(Pr), "b-", label="Meep")
ax.plot(angles, flux_theory, "r--", label="theory")
ax.set_rmax(1)
ax.set_rticks([0, 0.5, 1])
ax.grid(True)
ax.set_rlabel_position(22)
ax.legend()
if mp.am_master():
fig.savefig(
f"radiation_pattern_{mp.component_name(src_cmpt)}.png",
dpi=150,
bbox_inches="tight",
)
|