File: antenna-radiation.py

package info (click to toggle)
meep-mpi-default 1.29.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 79,148 kB
  • sloc: cpp: 32,541; python: 31,061; lisp: 1,225; makefile: 516; sh: 249; ansic: 131; javascript: 5
file content (138 lines) | stat: -rw-r--r-- 4,043 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import math
import matplotlib

matplotlib.use("agg")
import matplotlib.pyplot as plt
import numpy as np

import meep as mp

resolution = 50  # pixels/um

sxy = 4
dpml = 1
cell = mp.Vector3(sxy + 2 * dpml, sxy + 2 * dpml)

pml_layers = [mp.PML(dpml)]

fcen = 1.0
df = 0.4
src_cmpt = mp.Ex
sources = [
    mp.Source(
        src=mp.GaussianSource(fcen, fwidth=df), center=mp.Vector3(), component=src_cmpt
    )
]

if src_cmpt == mp.Ex:
    symmetries = [mp.Mirror(mp.X, phase=-1), mp.Mirror(mp.Y, phase=+1)]
elif src_cmpt == mp.Ey:
    symmetries = [mp.Mirror(mp.X, phase=+1), mp.Mirror(mp.Y, phase=-1)]
elif src_cmpt == mp.Ez:
    symmetries = [mp.Mirror(mp.X, phase=+1), mp.Mirror(mp.Y, phase=+1)]
else:
    symmetries = []

sim = mp.Simulation(
    cell_size=cell,
    resolution=resolution,
    sources=sources,
    symmetries=symmetries,
    boundary_layers=pml_layers,
)

nearfield_box = sim.add_near2far(
    fcen,
    0,
    1,
    mp.Near2FarRegion(center=mp.Vector3(0, +0.5 * sxy), size=mp.Vector3(sxy, 0)),
    mp.Near2FarRegion(
        center=mp.Vector3(0, -0.5 * sxy), size=mp.Vector3(sxy, 0), weight=-1
    ),
    mp.Near2FarRegion(center=mp.Vector3(+0.5 * sxy, 0), size=mp.Vector3(0, sxy)),
    mp.Near2FarRegion(
        center=mp.Vector3(-0.5 * sxy, 0), size=mp.Vector3(0, sxy), weight=-1
    ),
)

flux_box = sim.add_flux(
    fcen,
    0,
    1,
    mp.FluxRegion(center=mp.Vector3(0, +0.5 * sxy), size=mp.Vector3(sxy, 0)),
    mp.FluxRegion(center=mp.Vector3(0, -0.5 * sxy), size=mp.Vector3(sxy, 0), weight=-1),
    mp.FluxRegion(center=mp.Vector3(+0.5 * sxy, 0), size=mp.Vector3(0, sxy)),
    mp.FluxRegion(center=mp.Vector3(-0.5 * sxy, 0), size=mp.Vector3(0, sxy), weight=-1),
)

sim.run(until_after_sources=mp.stop_when_dft_decayed())

near_flux = mp.get_fluxes(flux_box)[0]

# half side length of far-field square box OR radius of far-field circle
r = 1000 / fcen

# resolution of far fields (points/μm)
res_ff = 1

far_flux_box = (
    nearfield_box.flux(
        mp.Y, mp.Volume(center=mp.Vector3(y=r), size=mp.Vector3(2 * r)), res_ff
    )[0]
    - nearfield_box.flux(
        mp.Y, mp.Volume(center=mp.Vector3(y=-r), size=mp.Vector3(2 * r)), res_ff
    )[0]
    + nearfield_box.flux(
        mp.X, mp.Volume(center=mp.Vector3(r), size=mp.Vector3(y=2 * r)), res_ff
    )[0]
    - nearfield_box.flux(
        mp.X, mp.Volume(center=mp.Vector3(-r), size=mp.Vector3(y=2 * r)), res_ff
    )[0]
)

npts = 100  # number of points in [0,2*pi) range of angles
angles = 2 * math.pi / npts * np.arange(npts)

E = np.zeros((npts, 3), dtype=np.complex128)
H = np.zeros((npts, 3), dtype=np.complex128)
for n in range(npts):
    ff = sim.get_farfield(
        nearfield_box, mp.Vector3(r * math.cos(angles[n]), r * math.sin(angles[n]))
    )
    E[n, :] = [ff[j] for j in range(3)]
    H[n, :] = [ff[j + 3] for j in range(3)]

Px = np.real(np.conj(E[:, 1]) * H[:, 2] - np.conj(E[:, 2]) * H[:, 1])
Py = np.real(np.conj(E[:, 2]) * H[:, 0] - np.conj(E[:, 0]) * H[:, 2])
Pr = np.sqrt(np.square(Px) + np.square(Py))

# integrate the radial flux over the circle circumference
far_flux_circle = np.sum(Pr) * 2 * np.pi * r / len(Pr)

print(f"flux:, {near_flux:.6f}, {far_flux_box:.6f}, {far_flux_circle:.6f}")

# Analytic formulas for the radiation pattern as the Poynting vector
# of an electric dipole in vacuum. From Section 4.2 "Infinitesimal Dipole"
# of Antenna Theory: Analysis and Design, 4th Edition (2016) by C. Balanis.
if src_cmpt == mp.Ex:
    flux_theory = np.sin(angles) ** 2
elif src_cmpt == mp.Ey:
    flux_theory = np.cos(angles) ** 2
elif src_cmpt == mp.Ez:
    flux_theory = np.ones((npts,))

fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6))
ax.plot(angles, Pr / max(Pr), "b-", label="Meep")
ax.plot(angles, flux_theory, "r--", label="theory")
ax.set_rmax(1)
ax.set_rticks([0, 0.5, 1])
ax.grid(True)
ax.set_rlabel_position(22)
ax.legend()

if mp.am_master():
    fig.savefig(
        f"radiation_pattern_{mp.component_name(src_cmpt)}.png",
        dpi=150,
        bbox_inches="tight",
    )