1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# Verifies that the total flux from a lossless dielectric disc computed in
# cylindrical coordinates using its near fields is equivalent to using
# its far fields via the radiation pattern obtained using a near-to-far field
# transformation.
# tutorial reference: https://meep.readthedocs.io/en/latest/Python_Tutorials/Near_to_Far_Field_Spectra/#radiation-pattern-of-a-disc-in-cylindrical-coordinates
import math
from typing import Tuple
import matplotlib
import meep as mp
import numpy as np
matplotlib.use("agg")
import matplotlib.pyplot as plt
resolution = 100 # pixels/μm
dpml = 0.5 # thickness of PML
dair = 1.0 # thickness of air padding
L = 6.0 # length of non-PML region
n = 2.4 # refractive index of surrounding medium
wvl = 1.0 # wavelength (in vacuum)
fcen = 1 / wvl # center frequency of source/monitor
# field decay threshold for runtime termination criteria
tol = 1e-8
# number of angular grid points in [0, π/2]
npts = 100
# grid of polar angles for computing radiated flux in far field
thetas = np.linspace(0, 0.5 * math.pi, npts)
# radius of quarter circle for computing flux in far field
r = 1000 * wvl
def plot_radiation_pattern_polar(Ptheta: np.ndarray):
"""Plots the radiation pattern in polar coordinates.
The angles increase clockwise with zero at the top (+z direction).
Args:
Ptheta: radial flux of the far fields in polar coordinates.
"""
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6))
ax.plot(
thetas,
Ptheta,
"b-",
)
ax.set_theta_direction(-1)
ax.set_theta_offset(0.5 * math.pi)
ax.set_thetalim(0, 0.5 * math.pi)
ax.grid(True)
ax.set_rlabel_position(22)
ax.set_ylabel("radial flux (a.u.)")
ax.set_title("radiation pattern in polar coordinates")
if mp.am_master():
fig.savefig(
"led_radpattern_polar.png",
dpi=150,
bbox_inches="tight",
)
def plot_radiation_pattern_3d(Ptheta: np.ndarray):
"""Plots the radiation pattern in 3d Cartesian coordinates.
Args:
Ptheta: radial flux of the far fields in polar coordinates.
"""
phis = np.linspace(0, 2 * np.pi, npts)
xs = np.zeros((len(thetas), len(phis)))
ys = np.zeros((len(thetas), len(phis)))
zs = np.zeros((len(thetas), len(phis)))
for i, theta in enumerate(thetas):
for j, phi in enumerate(phis):
xs[i, j] = Ptheta[i] * np.sin(theta) * np.cos(phi)
ys[i, j] = Ptheta[i] * np.sin(theta) * np.sin(phi)
zs[i, j] = Ptheta[i] * np.cos(theta)
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(6, 6))
ax.plot_surface(xs, ys, zs, cmap="inferno")
ax.set_title("radiation pattern in 3d")
ax.set_box_aspect((np.amax(xs), np.amax(ys), np.amax(zs)))
ax.set_zlabel("radial flux (a.u.)")
ax.set(xticklabels=[], yticklabels=[])
if mp.am_master():
fig.savefig(
"led_radpattern_3d.png",
dpi=150,
bbox_inches="tight",
)
def radiation_pattern(sim: mp.Simulation, n2f_mon: mp.DftNear2Far) -> np.ndarray:
"""Computes the radiation pattern from the far fields.
Args:
sim: a `Simulation` object.
n2f_mon: a `DftNear2Far` object returned by `Simulation.add_near2far`.
Returns:
Array of radial Poynting flux, one for each point on the circumference of
a quarter circle with angular range of [0, π/2] rad. 0 rad is the +z
direction and π/2 is +r.
"""
E = np.zeros((npts, 3), dtype=np.complex128)
H = np.zeros((npts, 3), dtype=np.complex128)
for n in range(npts):
ff = sim.get_farfield(
n2f_mon, mp.Vector3(r * math.sin(thetas[n]), 0, r * math.cos(thetas[n]))
)
E[n, :] = [np.conj(ff[j]) for j in range(3)]
H[n, :] = [ff[j + 3] for j in range(3)]
Pr = np.real(E[:, 1] * H[:, 2] - E[:, 2] * H[:, 1])
Pz = np.real(E[:, 0] * H[:, 1] - E[:, 1] * H[:, 0])
Prz = np.sqrt(np.square(Pr) + np.square(Pz))
return Prz
def disc_total_flux(dmat: float, h: float) -> Tuple[float, float]:
"""Computes the total radiated flux from a point dipole embedded
within a dielectric disc above a lossless ground plane using
its near and far fields as separate calculations.
Args:
dmat: thickness of dielectric disc.
h: height of dipole above ground plane as fraction of dmat.
Returns:
A 2-tuple of the total flux computed using the near and far fields,
respectively.
"""
sr = L + dpml
sz = dmat + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)
boundary_layers = [
mp.PML(dpml, direction=mp.R),
mp.PML(dpml, direction=mp.Z, side=mp.High),
]
src_cmpt = mp.Er
src_pt = mp.Vector3(0.1 * L, 0, -0.5 * sz + h * dmat)
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
component=src_cmpt,
center=src_pt,
)
]
geometry = [
mp.Block(
material=mp.Medium(index=n),
center=mp.Vector3(0.1 * L, 0, -0.5 * sz + 0.5 * dmat),
size=mp.Vector3(0.2 * L, mp.inf, dmat),
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
dimensions=mp.CYLINDRICAL,
m=-1,
boundary_layers=boundary_layers,
sources=sources,
geometry=geometry,
)
# flux monitor
flux_mon = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml),
size=mp.Vector3(L, 0, 0),
),
mp.FluxRegion(
center=mp.Vector3(L, 0, 0.5 * sz - dpml - 0.5 * (dair + dmat)),
size=mp.Vector3(0, 0, dair + dmat),
),
)
# near-field monitor
n2f_mon = sim.add_near2far(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml),
size=mp.Vector3(L, 0, 0),
),
mp.FluxRegion(
center=mp.Vector3(L, 0, 0.5 * sz - dpml - 0.5 * (dair + dmat)),
size=mp.Vector3(0, 0, dair + dmat),
),
)
fig, ax = plt.subplots()
sim.plot2D(ax=ax)
if mp.am_master():
fig.savefig("disc_simulation_layout.png", dpi=150, bbox_inches="tight")
sim.run(
until_after_sources=mp.stop_when_fields_decayed(
50,
src_cmpt,
src_pt,
tol,
),
)
flux_near = mp.get_fluxes(flux_mon)[0]
Ptheta = radiation_pattern(sim, n2f_mon)
plot_radiation_pattern_polar(r * r * Ptheta)
plot_radiation_pattern_3d(r * r * Ptheta)
dtheta = 0.5 * math.pi / (npts - 1)
dphi = 2 * math.pi
flux_far = np.sum(Ptheta * np.sin(thetas)) * r * r * dtheta * dphi
return flux_near, flux_far
if __name__ == "__main__":
disc_thickness = 0.7 * wvl / n
dipole_height = 0.5
near_flux, far_flux = disc_total_flux(disc_thickness, dipole_height)
err = abs(near_flux - far_flux) / near_flux
print(
f"total_flux:, {near_flux:.5f} (near), {far_flux:.5f} (far), "
f"{err:.5f} (error)"
)
|