File: extraction_eff_ldos.py

package info (click to toggle)
meep-mpi-default 1.29.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 79,148 kB
  • sloc: cpp: 32,541; python: 31,061; lisp: 1,225; makefile: 516; sh: 249; ansic: 131; javascript: 5
file content (221 lines) | stat: -rw-r--r-- 6,519 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Computes the extraction efficiency in 3D and cylindrical coordinates.

Verifies that the extraction efficiency of a point dipole in a dielectric
layer above a lossless metallic ground plane computed in two different
coordinate systems agree.
"""

import matplotlib.pyplot as plt
import meep as mp
import numpy as np

resolution = 80  # pixels/μm
dpml = 0.5  # thickness of PML
dair = 1.0  # thickness of air padding
L = 6.0  # length of non-PML region
n = 2.4  # refractive index of surrounding medium
wvl = 1.0  # wavelength (in vacuum)

fcen = 1 / wvl  # center frequency of source/monitor

# runtime termination criteria
tol = 1e-8


def extraction_eff_cyl(dmat: float, h: float) -> float:
    """Computes the extraction efficiency in cylindrical coordinates.

    Args:
      dmat: thickness of dielectric layer.
      h: height of dipole above ground plane as fraction of dmat.

    Returns:
      The extraction efficiency of the dipole within the dielecric layer.
    """
    sr = L + dpml
    sz = dmat + dair + dpml
    cell_size = mp.Vector3(sr, 0, sz)

    boundary_layers = [
        mp.PML(dpml, direction=mp.R),
        mp.PML(dpml, direction=mp.Z, side=mp.High),
    ]

    src_cmpt = mp.Er

    # Because (1) Er is not defined at r=0 on the Yee grid, and (2) there
    # seems to be a bug in the interpolation of an Er point source at r=0,
    # the source is placed at r=~Δr (just outside the first voxel).
    # This incurs a small error which decreases linearly with resolution.
    # Ref: https://github.com/NanoComp/meep/issues/2704
    src_pt = mp.Vector3(1.5 / resolution, 0, -0.5 * sz + h * dmat)

    sources = [
        mp.Source(
            src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
            component=src_cmpt,
            center=src_pt,
        )
    ]

    geometry = [
        mp.Block(
            material=mp.Medium(index=n),
            center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
            size=mp.Vector3(mp.inf, mp.inf, dmat),
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        dimensions=mp.CYLINDRICAL,
        m=-1,
        boundary_layers=boundary_layers,
        sources=sources,
        geometry=geometry,
    )

    flux_air = sim.add_flux(
        fcen,
        0,
        1,
        mp.FluxRegion(
            center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml),
            size=mp.Vector3(L, 0, 0),
        ),
        mp.FluxRegion(
            center=mp.Vector3(L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, 0, dair),
        ),
    )

    sim.run(
        mp.dft_ldos(fcen, 0, 1),
        until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
    )

    out_flux = mp.get_fluxes(flux_air)[0]
    if src_pt.x == 0:
        dV = np.pi / (resolution**3)
    else:
        dV = 2 * np.pi * src_pt.x / (resolution**2)
    total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
    ext_eff = out_flux / total_flux
    print(f"extraction efficiency (cyl):, " f"{dmat:.4f}, {h:.4f}, {ext_eff:.6f}")

    return ext_eff


def extraction_eff_3D(dmat: float, h: float) -> float:
    """Computes the extraction efficiency in 3D Cartesian coordinates.

    Args:
      dmat: thickness of dielectric layer.
      h: height of dipole above ground plane as fraction of dmat.

    Returns:
      The extraction efficiency of the dipole within the dielecric layer.
    """
    sxy = L + 2 * dpml
    sz = dmat + dair + dpml
    cell_size = mp.Vector3(sxy, sxy, sz)

    symmetries = [
        mp.Mirror(direction=mp.X, phase=-1),
        mp.Mirror(direction=mp.Y),
    ]

    boundary_layers = [
        mp.PML(dpml, direction=mp.X),
        mp.PML(dpml, direction=mp.Y),
        mp.PML(dpml, direction=mp.Z, side=mp.High),
    ]

    src_cmpt = mp.Ex
    src_pt = mp.Vector3(0, 0, -0.5 * sz + h * dmat)
    sources = [
        mp.Source(
            src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
            component=src_cmpt,
            center=src_pt,
        )
    ]

    geometry = [
        mp.Block(
            material=mp.Medium(index=n),
            center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
            size=mp.Vector3(mp.inf, mp.inf, dmat),
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        sources=sources,
        geometry=geometry,
        symmetries=symmetries,
    )

    flux_air = sim.add_flux(
        fcen,
        0,
        1,
        mp.FluxRegion(
            center=mp.Vector3(0, 0, 0.5 * sz - dpml),
            size=mp.Vector3(L, L, 0),
        ),
        mp.FluxRegion(
            center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, L, dair),
        ),
        mp.FluxRegion(
            center=mp.Vector3(-0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, L, dair),
            weight=-1.0,
        ),
        mp.FluxRegion(
            center=mp.Vector3(0, 0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(L, 0, dair),
        ),
        mp.FluxRegion(
            center=mp.Vector3(0, -0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(L, 0, dair),
            weight=-1.0,
        ),
    )

    sim.run(
        mp.dft_ldos(fcen, 0, 1),
        until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
    )

    out_flux = mp.get_fluxes(flux_air)[0]
    dV = 1 / (resolution**3)
    total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
    ext_eff = out_flux / total_flux
    print(f"extraction efficiency (3D):, {dmat:.4f}, {h:.4f}, {ext_eff:.6f}")

    return ext_eff


if __name__ == "__main__":
    layer_thickness = 0.7 * wvl / n
    dipole_height = np.linspace(0.1, 0.9, 21)

    exteff_cyl = np.zeros(len(dipole_height))
    exteff_3D = np.zeros(len(dipole_height))
    for j in range(len(dipole_height)):
        exteff_cyl[j] = extraction_eff_cyl(layer_thickness, dipole_height[j])
        exteff_3D[j] = extraction_eff_3D(layer_thickness, dipole_height[j])

    plt.plot(dipole_height, exteff_cyl, "bo-", label="cylindrical")
    plt.plot(dipole_height, exteff_3D, "ro-", label="3D Cartesian")
    plt.xlabel("height of dipole above ground plane (fraction of layer thickness)")
    plt.ylabel("extraction efficiency")
    plt.legend()

    if mp.am_master():
        plt.savefig("extraction_eff_vs_dipole_height.png", dpi=150, bbox_inches="tight")