File: zone_plate.py

package info (click to toggle)
meep-mpi-default 1.29.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 79,148 kB
  • sloc: cpp: 32,541; python: 31,061; lisp: 1,225; makefile: 516; sh: 249; ansic: 131; javascript: 5
file content (185 lines) | stat: -rw-r--r-- 5,173 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Computes the diffraction spectra of a zone plate in cylindrical coords."""

import math

import matplotlib.pyplot as plt
import meep as mp
import numpy as np


resolution_um = 25

pml_um = 1.0
substrate_um = 2.0
padding_um = 2.0
height_um = 0.5
focal_length_um = 200
scan_length_z_um = 100
farfield_resolution_um = 10

pml_layers = [mp.PML(thickness=pml_um)]

wavelength_um = 0.5
frequency = 1 / wavelength_um
frequench_width = 0.2 * frequency

# The number of zones in the zone plate.
# Odd-numbered zones impart a π phase shift and
# even-numbered zones impart no phase shift.
num_zones = 25

# Specify the radius of each zone using the equation
# from https://en.wikipedia.org/wiki/Zone_plate.
zone_radius_um = np.zeros(num_zones)
for n in range(1, num_zones + 1):
    zone_radius_um[n - 1] = math.sqrt(
        n * wavelength_um * (focal_length_um + n * wavelength_um / 4)
    )

size_r_um = zone_radius_um[-1] + padding_um + pml_um
size_z_um = pml_um + substrate_um + height_um + padding_um + pml_um
cell_size = mp.Vector3(size_r_um, 0, size_z_um)

# Specify a (linearly polarized) planewave at normal incidence.
sources = [
    mp.Source(
        mp.GaussianSource(frequency, fwidth=frequench_width, is_integrated=True),
        component=mp.Er,
        center=mp.Vector3(0.5 * size_r_um, 0, -0.5 * size_z_um + pml_um),
        size=mp.Vector3(size_r_um),
    ),
    mp.Source(
        mp.GaussianSource(frequency, fwidth=frequench_width, is_integrated=True),
        component=mp.Ep,
        center=mp.Vector3(0.5 * size_r_um, 0, -0.5 * size_z_um + pml_um),
        size=mp.Vector3(size_r_um),
        amplitude=-1j,
    ),
]

glass = mp.Medium(index=1.5)

# Add the substrate.
geometry = [
    mp.Block(
        material=glass,
        size=mp.Vector3(size_r_um, 0, pml_um + substrate_um),
        center=mp.Vector3(
            0.5 * size_r_um, 0, -0.5 * size_z_um + 0.5 * (pml_um + substrate_um)
        ),
    )
]

# Add the zone plates starting with the ones with largest radius.
for n in range(num_zones - 1, -1, -1):
    geometry.append(
        mp.Block(
            material=glass if n % 2 == 0 else mp.vacuum,
            size=mp.Vector3(zone_radius_um[n], 0, height_um),
            center=mp.Vector3(
                0.5 * zone_radius_um[n],
                0,
                -0.5 * size_z_um + pml_um + substrate_um + 0.5 * height_um,
            ),
        )
    )

sim = mp.Simulation(
    cell_size=cell_size,
    boundary_layers=pml_layers,
    resolution=resolution_um,
    sources=sources,
    geometry=geometry,
    dimensions=mp.CYLINDRICAL,
    m=-1,
)

# Add the near-field monitor (must be entirely in air).
n2f_monitor = sim.add_near2far(
    frequency,
    0,
    1,
    mp.Near2FarRegion(
        center=mp.Vector3(0.5 * (size_r_um - pml_um), 0, 0.5 * size_z_um - pml_um),
        size=mp.Vector3(size_r_um - pml_um, 0, 0),
    ),
    mp.Near2FarRegion(
        center=mp.Vector3(
            size_r_um - pml_um,
            0,
            0.5 * size_z_um - pml_um - 0.5 * (height_um + padding_um),
        ),
        size=mp.Vector3(0, 0, height_um + padding_um),
    ),
)

fig, ax = plt.subplots()
sim.plot2D(ax=ax)
if mp.am_master():
    fig.savefig("zone_plate_layout.png", bbox_inches="tight", dpi=150)

# Timestep the fields until they have sufficiently decayed away.
sim.run(
    until_after_sources=mp.stop_when_fields_decayed(
        50.0, mp.Er, mp.Vector3(0.5 * size_r_um, 0, 0), 1e-6
    )
)

farfields_r = sim.get_farfields(
    n2f_monitor,
    farfield_resolution_um,
    center=mp.Vector3(
        0.5 * (size_r_um - pml_um),
        0,
        -0.5 * size_z_um + pml_um + substrate_um + height_um + focal_length_um,
    ),
    size=mp.Vector3(size_r_um - pml_um, 0, 0),
)

farfields_z = sim.get_farfields(
    n2f_monitor,
    farfield_resolution_um,
    center=mp.Vector3(
        0, 0, -0.5 * size_z_um + pml_um + substrate_um + height_um + focal_length_um
    ),
    size=mp.Vector3(0, 0, scan_length_z_um),
)

intensity_r = (
    np.absolute(farfields_r["Ex"]) ** 2
    + np.absolute(farfields_r["Ey"]) ** 2
    + np.absolute(farfields_r["Ez"]) ** 2
)
intensity_z = (
    np.absolute(farfields_z["Ex"]) ** 2
    + np.absolute(farfields_z["Ey"]) ** 2
    + np.absolute(farfields_z["Ez"]) ** 2
)

# Plot the intensity data and save the result to disk.
fig, ax = plt.subplots(ncols=2)

ax[0].semilogy(np.linspace(0, size_r_um - pml_um, intensity_r.size), intensity_r, "bo-")
ax[0].set_xlim(-2, 20)
ax[0].set_xticks(np.arange(0, 25, 5))
ax[0].grid(True, axis="y", which="both", ls="-")
ax[0].set_xlabel(r"$r$ coordinate (μm)")
ax[0].set_ylabel(r"energy density of far fields, |E|$^2$")

ax[1].semilogy(
    np.linspace(
        focal_length_um - 0.5 * scan_length_z_um,
        focal_length_um + 0.5 * scan_length_z_um,
        intensity_z.size,
    ),
    intensity_z,
    "bo-",
)
ax[1].grid(True, axis="y", which="both", ls="-")
ax[1].set_xlabel(r"$z$ coordinate (μm)")
ax[1].set_ylabel(r"energy density of far fields, |E|$^2$")

fig.suptitle(f"binary-phase zone plate with focal length $z$ = {focal_length_um} μm")

if mp.am_master():
    fig.savefig("zone_plate_farfields.png", dpi=200, bbox_inches="tight")