1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <meep.hpp>
using namespace meep;
using namespace std;
double one(const vec &) { return 1.0; }
int compare(double a, double b, const char *n, double eps=4e-15) {
if (sizeof(realnum) == sizeof(float)) eps = sqrt(eps)*10;
if (fabs(a-b) > fabs(b)*eps && fabs(b) > 1e-14) {
master_printf("%s differs by\t%g out of\t%g\n", n, a-b, b);
master_printf("This gives a fractional error of %g\n", fabs(a-b)/fabs(b));
return 0;
} else {
return 1;
}
}
int compare_point(fields &f1, fields &f2, const vec &p, double eps=4e-8) {
if (sizeof(realnum) == sizeof(float)) eps = sqrt(eps);
monitor_point m1, m_test;
f1.get_point(&m_test, p);
f2.get_point(&m1, p);
for (int i=0;i<10;i++) {
component c = (component) i;
if (f1.gv.has_field(c)) {
complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c);
if (abs(v1 - v2) > eps*abs(v2) && abs(v2) > eps*100) {
master_printf("%s differs: %g %g out of %g %g\n",
component_name(c), real(v2-v1), imag(v2-v1), real(v2), imag(v2));
master_printf("This comes out to a fractional error of %g\n",
abs(v1 - v2)/abs(v2));
master_printf("Right now I'm looking at %g %g, time %g\n", p.r(), p.z(), f1.time());
all_wait();
return 0;
}
}
}
return 1;
}
int test_simple_periodic(double eps(const vec &), int splitting, const char *mydirname) {
double a = 10.0;
double ttot = 30.0;
grid_volume gv = volcyl(1.5,0.8,a);
structure s1(gv, eps, no_pml(), identity(), 0, 0.4);
structure s(gv, eps, no_pml(), identity(), splitting, 0.4);
s.set_output_directory(mydirname);
s1.set_output_directory(mydirname);
for (int m=0;m<3;m++) {
char m_str[10];
snprintf(m_str, 10, "%d", m);
master_printf("Trying with m = %d and a splitting into %d chunks...\n",
m, splitting);
fields f(&s, m);
f.use_bloch(0.0);
f.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
fields f1(&s1, m);
f1.use_bloch(0.0);
f1.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
if (!compare(f1.count_volume(Ep), f.count_volume(Ep), "grid_volume")) return 0;
master_printf("Chunks are %g by %g\n",
f.chunks[0]->gv.nr()/a, f.chunks[0]->gv.nz()/a);
double field_energy_check_time = 29.0;
while (f.time() < ttot) {
f.step();
f1.step();
if (!compare_point(f, f1, veccyl(0.5, 0.4))) return 0;
if (!compare_point(f, f1, veccyl(0.46, 0.36))) return 0;
if (!compare_point(f, f1, veccyl(1.0, 0.4))) return 0;
if (!compare_point(f, f1, veccyl(0.01, 0.02))) return 0;
if (!compare_point(f, f1, veccyl(0.601, 0.701))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(),
" total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()),
"electric energy")) return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()),
"magnetic energy")) return 0;
field_energy_check_time += 5.0;
}
}
}
return 1;
}
int test_simple_metallic(double eps(const vec &), int splitting, const char *mydirname) {
double a = 10.0;
double ttot = 30.0;
grid_volume gv = volcyl(1.5,0.8,a);
structure s1(gv, eps, no_pml(), identity(), 0, 0.4);
structure s(gv, eps, no_pml(), identity(), splitting, 0.4);
s.set_output_directory(mydirname);
s1.set_output_directory(mydirname);
for (int m=0;m<3;m++) {
char m_str[10];
snprintf(m_str, 10, "%d", m);
master_printf("Metallic with m = %d and a splitting into %d chunks...\n",
m, splitting);
fields f(&s, m);
f.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
fields f1(&s1, m);
f1.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
if (!compare(f1.count_volume(Ep), f.count_volume(Ep), "grid_volume")) return 0;
master_printf("Chunks are %g by %g\n",
f.chunks[0]->gv.nr()/a, f.chunks[0]->gv.nz()/a);
double field_energy_check_time = 29.0;
while (f.time() < ttot) {
f.step();
f1.step();
if (!compare_point(f, f1, veccyl(0.5, 0.4))) return 0;
if (!compare_point(f, f1, veccyl(0.46, 0.36))) return 0;
if (!compare_point(f, f1, veccyl(1.0, 0.4))) return 0;
if (!compare_point(f, f1, veccyl(0.01, 0.02))) return 0;
if (!compare_point(f, f1, veccyl(0.601, 0.701))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(),
" total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()),
"electric energy")) return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()),
"magnetic energy")) return 0;
field_energy_check_time += 5.0;
}
}
}
return 1;
}
int test_r_equals_zero(double eps(const vec &), const char *mydirname) {
double a = 10.0;
double ttot = 3.0;
grid_volume gv = volcyl(1.5,0.8,a);
structure s(gv, eps, no_pml(), identity(), 0, 0.4);
s.set_output_directory(mydirname);
for (int m=0;m<3;m++) {
char m_str[10];
snprintf(m_str, 10, "%d", m);
master_printf("Checking at r == 0 with m = %d...\n", m);
fields f(&s, m);
f.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
while (f.time() < ttot) f.step();
monitor_point p;
f.get_point(&p, veccyl(0.0, 0.5));
if (p.get_component(Ez) != 0.0 && (m & 1)) {
master_printf("Got non-zero Ez with m == %d\n", m);
return 0;
}
if (p.get_component(Hz) != 0.0 && (m & 1)) {
master_printf("Got non-zero Hz with m == %d\n", m);
return 0;
}
if (p.get_component(Er) != 0.0 && !(m & 1)) {
master_printf("Got non-zero Er with m == %d\n", m);
return 0;
}
if (p.get_component(Ep) != 0.0 && !(m & 1)) {
master_printf("Got non-zero Ep with m == %d\n", m);
return 0;
}
if (p.get_component(Hr) != 0.0 && !(m & 1)) {
master_printf("Got non-zero Hr with m == %d\n", m);
return 0;
}
if (p.get_component(Hp) != 0.0 && !(m & 1)) {
master_printf("Got non-zero Hp of %g %g with m == %d\n",
real(p.get_component(Hp)), imag(p.get_component(Hp)), m);
return 0;
}
}
return 1;
}
int test_pml(double eps(const vec &), int splitting, const char *mydirname) {
double a = 8;
double ttot = 25.0;
grid_volume gv = volcyl(3.5,10.0,a);
structure s1(gv, eps, pml(2.0), identity(), 0, 0.4);
structure s(gv, eps, pml(2.0), identity(), splitting, 0.4);
s.set_output_directory(mydirname);
s1.set_output_directory(mydirname);
for (int m=0;m<3;m++) {
char m_str[10];
snprintf(m_str, 10, "%d", m);
master_printf("PML with m = %d and a splitting into %d chunks...\n",
m, splitting);
fields f(&s, m);
f.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.3, 7.0), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.3, 7.0), 1.0);
fields f1(&s1, m);
f1.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.3, 7.0), 1.0);
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.3, 7.0), 1.0);
if (!compare(f1.count_volume(Ep), f.count_volume(Ep), "grid_volume", 3e-14)) return 0;
master_printf("Chunks are %g by %g\n",
f.chunks[0]->gv.nr()/a, f.chunks[0]->gv.nz()/a);
double field_energy_check_time = 10.0;
while (f.time() < ttot) {
f.step();
f1.step();
//f.output_real_imaginary_slices("multi");
//f1.output_real_imaginary_slices("single");
if (!compare_point(f, f1, veccyl(0.5, 7.0))) return 0;
if (!compare_point(f, f1, veccyl(0.46, 0.36))) return 0;
if (!compare_point(f, f1, veccyl(1.0, 0.4))) return 0;
if (!compare_point(f, f1, veccyl(0.01, 0.02))) return 0;
if (!compare_point(f, f1, veccyl(0.601, 0.701))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(),
"pml total energy", 1e-13)) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()),
"electric energy", 1e-13)) return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()),
"magnetic energy", 1e-13)) return 0;
field_energy_check_time += 10.0;
}
}
}
return 1;
}
complex<double> checkers(const vec &pt) {
const double ther = pt.r() + 0.0001; // Just to avoid roundoff issues.
const double thez = pt.r() + 0.0001; // Just to avoid roundoff issues.
int z = (int) (thez*5.0);
int r = (int) (ther*5.0);
int zz = (int) (thez*10.0);
int rr = (int) (ther*10.0);
if ((r & 1) ^ (z & 1)) return cos(thez*ther);
if ((rr & 1) ^ (zz & 1)) return 1.0;
return 0.0;
}
int test_pattern(double eps(const vec &), int splitting,
const char *mydirname) {
double a = 10.0;
grid_volume gv = volcyl(1.5,0.8,a);
structure s1(gv, eps);
structure s(gv, eps, no_pml(), identity(), splitting);
s.set_output_directory(mydirname);
s1.set_output_directory(mydirname);
for (int m=0;m<1;m++) {
char m_str[10];
snprintf(m_str, 10, "%d", m);
master_printf("Trying test pattern with m = %d and %d chunks...\n",
m, splitting);
fields f(&s, m);
f.use_bloch(0.0);
fields f1(&s1, m);
f1.use_bloch(0.0);
if (!compare(f1.count_volume(Ep), f.count_volume(Ep), "grid_volume")) return 0;
master_printf("First chunk is %g by %g\n",
f.chunks[0]->gv.nr()/a, f.chunks[0]->gv.nz()/a);
f1.initialize_field(Hp, checkers);
f.initialize_field(Hp, checkers);
f.step();
f1.step();
if (!compare_point(f, f1, veccyl(0.751, 0.401))) return 0;
if (!compare_point(f, f1, veccyl(0.01, 0.02))) return 0;
if (!compare_point(f, f1, veccyl(1.0, 0.7))) return 0;
if (!compare(f.field_energy(), f1.field_energy(),
" total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()),
"electric energy")) return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()),
"magnetic energy")) return 0;
}
return 1;
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
quiet = true;
const char *mydirname = "cylindrical-out";
trash_output_directory(mydirname);
master_printf("Testing cylindrical coords under different splittings...\n");
if (!test_r_equals_zero(one, mydirname)) abort("error in test_r_equals_zero");
for (int s=2;s<6;s++)
if (!test_pattern(one, s, mydirname)) abort("error in test_pattern\n");
//if (!test_pattern(one, 8, mydirname)) abort("error in crazy test_pattern\n");
//if (!test_pattern(one, 120, mydirname)) abort("error in crazy test_pattern\n");
for (int s=2;s<4;s++)
if (!test_simple_periodic(one, s, mydirname)) abort("error in test_simple_periodic\n");
//if (!test_simple_periodic(one, 8, mydirname))
// abort("error in crazy test_simple_periodic\n");
//if (!test_simple_periodic(one, 120, mydirname))
// abort("error in crazy test_simple_periodic\n");
for (int s=2;s<5;s++)
if (!test_simple_metallic(one, s, mydirname)) abort("error in test_simple_metallic\n");
//if (!test_simple_metallic(one, 8, mydirname))
// abort("error in crazy test_simple_metallic\n");
//if (!test_simple_metallic(one, 120, mydirname))
// abort("error in crazy test_simple_metallic\n");
for (int s=2;s<6;s++)
if (!test_pml(one, s, mydirname)) abort("error in test_pml\n");
return 0;
}
|