File: casimir.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (326 lines) | stat: -rw-r--r-- 11,733 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/* Functions to speed up Casimir-force calculations using FDTD.  It is
   possible to use the unmodified Meep, but if you do this from Scheme
   it is rather slow to perform the stress-tensor integration, and
   also the FFT to compute g(t) is moderately painful in Scheme.  Of
   course, you could just use Meep's C++ interface, but to make it
   more user-friendly we implement the following functions to speed up
   a Scheme front-end implementation of the Casimir calculation. */

#include <math.h>
#include <complex>

#include "meep.hpp"

#include "config.h"

#if defined(HAVE_LIBFFTW)
#  include <fftw.h>
#elif defined(HAVE_LIBFFTW3)
#  include <fftw3.h>
#endif

using namespace std;

namespace meep {

typedef complex<double> C;

/* Return an array of values of the g(t) function, for times [0,T]
   with steps dt, for a given Casimir conductivity sigma.  If there is
   any additional frequency dependence of the dielectric function,
   eps_func(omega) should equal eps(omega)/eps(infinity); note that
   the omega argument will be complex.  If Tfft is passed, it is a
   time (should be > T) giving extra resolution for the Fourier
   transform.  If ft is E_stuff or D_stuff, g(t) is evaluated at n*dt
   timesteps corresponding to the electric field; if ft is H_stuff or
   B_stuff we evaluate at (n-0.5)*dt timesteps corresponding to the
   magnetic field. */
complex<double> *make_casimir_gfunc(double T, double dt, double sigma, field_type ft,
				    complex<double> (*eps_func)(complex<double> omega),
				    double Tfft) {
  double tshift = (ft == E_stuff || ft == D_stuff) ? 0.0 : -0.5*dt;
  T += 5 * dt; // allocate a few extra timesteps just in case

  // set some reasonable defaults
  if (Tfft <= T) Tfft = T * 100; // * 10 is not enough
  if (Tfft <= 1000) Tfft = 1000;

  int Nfft = int(ceil(Tfft / dt));
  C *dg = new C[Nfft];
  C eps0(1.0,0);

  for (int i = 0; i < Nfft; ++i) dg[i] = 0;
  for (int i = 1; i < Nfft/2; ++i) {
    double xi = 2*pi*i / (Nfft * dt);
    dg[i] = C(0,-xi) * sqrt(C(1.0, sigma/xi)) * C(1.0, 0.5*sigma/xi);
  }
  dg[0] = -sigma;
  if (eps_func){
    eps0 = eps_func(0.0); // != 1 in general 
    for (int i = 1; i < Nfft/2 ; ++i) {
      double xi = 2*pi*i / (Nfft * dt); 
      dg[i] = dg[i] * eps_func(xi * sqrt(C(1.0, sigma/xi)));
    }
  }						
  for (int i = 1; i < Nfft/2; ++i) {
    double xi = 2*pi*i / (Nfft * dt);
    dg[i] = dg[i] - (C(sigma, -xi) + 0.5 * eps0 * sqrt(C(0.0, (sigma*sigma*sigma) / xi)));
  }
  if (tshift != 0.0){ // time shift:
    for (int i = 1; i < Nfft/2 ; ++i) {
      double xi = 2*pi*i / (Nfft * dt);
      dg[i] = dg[i] * polar(1.0, xi * tshift);
    }
  }
#if defined(HAVE_LIBFFTW)
  fftw_plan p;
  p = fftw_create_plan(Nfft, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_IN_PLACE);
  fftw_one(p, reinterpret_cast<fftw_complex*>(dg),  NULL);
  fftw_destroy_plan(p);
#elif defined(HAVE_LIBFFTW3)
  fftw_plan p;
  p = fftw_plan_dft_1d(Nfft, reinterpret_cast<fftw_complex*>(dg),
		       reinterpret_cast<fftw_complex*>(dg),
		       FFTW_BACKWARD, FFTW_ESTIMATE);
  fftw_execute(p);
  fftw_destroy_plan(p);
#else
  abort("make_casimir_g requires some version of FFTW");
#endif

  int N = int(ceil(T / dt));
  C *g = new C[N];
  g[0] = 0;
  double dxi = 1.0 / (Nfft * dt);
  for (int i = 1; i < N; ++i) {
    double t = i * dt + tshift;
    g[i] = 2.0 * (dg[i] * dxi + (C(0.0,1.0) * ((1/(t*t) + sigma/t) / (2*pi)
					       + 0.25 * eps0 * sqrt(sigma*sigma*sigma/(t*pi)))));
  }

  delete[] dg;
  return g;
}

typedef struct {
  double kx, ky, kz;
  double x0, y0, z0;
  direction xd, yd, zd;
  complex<long double> sum;
  double dV;
} stress_data;

/* chunkloop for the low-level loop_in_chunks routine, to do the
   Casimir stress-tensor integration.  We use this rather than
   fields::integrate because we need to *omit* the 2*pi*r Jacobian
   factor in cylindrical coordinates (which is cancelled by the
   delta-function normalization in the overall Casimir expression). */
static void stress_chunkloop(fields_chunk *fc, int ichunk, component cgrid,
			     ivec is, ivec ie,
			     vec s0, vec s1, vec e0, vec e1,
			     double dV0, double dV1,
			     ivec shift, complex<double> shift_phase,
			     const symmetry &S, int sn,
			     void *data_)
{
  (void) ichunk; (void) dV0; (void) dV1; // unused
  stress_data *d = (stress_data *) data_;
  complex<long double> sum = 0.0;
  complex<double> ph;
  double dV = d->dV;

  ph = shift_phase * S.phase_shift(cgrid, sn);

  if (!fc->f[cgrid][0]) return;

  vec rshift(shift * (0.5*fc->gv.inva));
  LOOP_OVER_IVECS(fc->gv, is, ie, idx) {
    IVEC_LOOP_LOC(fc->gv, loc);
    loc = S.transform(loc, sn) + rshift;

    double fre, fim;
    fre = fc->f[cgrid][0][idx];
    fim = fc->f[cgrid][1] ? fc->f[cgrid][1][idx] : 0.0;
    complex<double> fval = complex<double>(fre, fim) * ph;

    sum += fval * (cos(d->kx * (loc.in_direction(d->xd) - d->x0))
		   * cos(d->ky * (loc.in_direction(d->yd) - d->y0))
		   * cos(d->kz * (loc.in_direction(d->zd) - d->z0))
		   * IVEC_LOOP_WEIGHT(s0, s1, e0, e1, dV));
  }

  d->sum += sum;
}

  // Identical to stress_chunkloop above, except that we use bloch functions
  // exp(i k x) instead of cosine functions
static void stress_chunkloop_bloch(fields_chunk *fc, int ichunk, component cgrid,
				   ivec is, ivec ie,
				   vec s0, vec s1, vec e0, vec e1,
				   double dV0, double dV1,
				   ivec shift, complex<double> shift_phase,
				   const symmetry &S, int sn,
				   void *data_)
{
  (void) ichunk; (void) dV0; (void) dV1; // unused
  stress_data *d = (stress_data *) data_;
  complex<long double> sum = 0.0;
  complex<double> ph;
  double dV = d->dV;

  ph = shift_phase * S.phase_shift(cgrid, sn);

  if (!fc->f[cgrid][0]) return;

  vec rshift(shift * (0.5*fc->gv.inva));
  LOOP_OVER_IVECS(fc->gv, is, ie, idx) {
    IVEC_LOOP_LOC(fc->gv, loc);
    loc = S.transform(loc, sn) + rshift;

    double fre, fim;
    fre = fc->f[cgrid][0][idx];
    fim = fc->f[cgrid][1] ? fc->f[cgrid][1][idx] : 0.0;
    complex<double> fval = complex<double>(fre, fim) * ph;
    // coordinate origin is taken to be the center of the unit cell
    sum += fval * polar(1.0, 
			- d->kx * (loc.in_direction(d->xd) - d->x0)
			- d->ky * (loc.in_direction(d->yd) - d->y0)
			- d->kz * (loc.in_direction(d->zd) - d->z0))
      * IVEC_LOOP_WEIGHT(s0, s1, e0, e1, dV);
  }
  d->sum += sum;
}

complex<double> fields::casimir_stress_dct_integral(direction dforce,
						    direction dsource,
						    double mx, double my, double mz,
						    field_type ft,
						    volume where,
						    bool is_bloch) {
  direction dnormal = normal_direction(where);
  direction dcomponent = NO_DIRECTION;  // relevant component of field to integrate over
  double coefficient = 1.0;

  if (where.dim != gv.dim)
    abort("invalid dimesionality in casimir_stress_dct_integral");
  if (coordinate_mismatch(gv.dim,dforce) || coordinate_mismatch(gv.dim,dsource))
    abort("invalid directions in casimir_stress_dct_integral");
  if (dnormal == NO_DIRECTION)
    abort("invalid integration surface in casimir_stress_dct_integral");
  if (ft != E_stuff && ft != H_stuff) 
    abort("invalid field type in casimir_stress_dct_integral");

  if (dforce != dnormal && dsource != dnormal)
    return 0.0;
  else if (dforce != dnormal && dsource == dnormal) {
    // force-source offdiagonal term
    dcomponent = dforce;
  }
  else if (dforce == dnormal && dsource == dnormal) {
    // +source-source/2 diagonal term
    dcomponent = dsource;
    coefficient = +0.5;
  }
  else /* if (dforce == dnormal && dsource != dnormal) */ {
    // -source-source/2 diagonal term
    dcomponent = dsource;
    coefficient = -0.5;
  }

  component c = direction_component(first_field_component(ft), dcomponent);

  stress_data data;

  data.zd = Z;
  if (gv.dim == Dcyl) { data.xd = R; data.yd = P; }
  else { data.xd = X; data.yd = Y; }

  if (has_direction(gv.dim, data.xd) && where.in_direction(data.xd) > 0) {
    data.x0 = !is_bloch ? where.in_direction_min(data.xd) :
      (0.5 * (where.in_direction_min(data.xd) + where.in_direction_max(data.xd)));
    data.kx = mx * pi / (!is_bloch ? where.in_direction(data.xd) : 1.0);
    coefficient *= sqrt((mx == 0 || is_bloch ? 1.0 : 2.0) / where.in_direction(data.xd));
  }
  else {
    data.xd = start_at_direction(gv.dim); // a dir we are guaranteed to have
    data.x0 = data.kx = 0; // innocuous values: ignore this dir
  }
  if (has_direction(gv.dim, data.yd) && where.in_direction(data.yd) > 0) {
    data.y0 = !is_bloch ? where.in_direction_min(data.yd) :
      (0.5 * (where.in_direction_min(data.yd) + where.in_direction_max(data.yd)));
    data.ky = my * pi / (!is_bloch ? where.in_direction(data.yd) : 1.0);
    coefficient *= sqrt((my == 0 || is_bloch ? 1.0 : 2.0) / where.in_direction(data.yd));
  }
  else {
    data.yd = start_at_direction(gv.dim); // a dir we are guaranteed to have
    data.y0 = data.ky = 0; // innocuous values: ignore this dir
  }
  if (has_direction(gv.dim, data.zd) && where.in_direction(data.zd) > 0) {
    data.z0 = !is_bloch ? where.in_direction_min(data.zd) :
      (0.5 * (where.in_direction_min(data.zd) + where.in_direction_max(data.zd)));
    data.kz = mz * pi / (!is_bloch ? where.in_direction(data.zd) : 1.0);
    coefficient *= sqrt((mz == 0 || is_bloch ? 1.0 : 2.0) / where.in_direction(data.zd));
  }
  else {
    data.zd = start_at_direction(gv.dim); // a dir we are guaranteed to have
    data.z0 = data.kz = 0; // innocuous values: ignore this dir
  }
  
  coefficient *= (ft==E_stuff 
  		  ? get_eps(where.center()) : get_mu(where.center()));

  data.sum = 0.0;
  data.dV = 1.0;
  LOOP_OVER_DIRECTIONS(gv.dim, d)
    if (where.in_direction(d) > 0.0)
      data.dV *= gv.inva;

  if (is_bloch) //complex exponentials exp(i m x)
    loop_in_chunks(stress_chunkloop_bloch, &data, where, c);
  else //cosine functions for closed surfaces
    loop_in_chunks(stress_chunkloop, &data, where, c); 

  data.sum = sum_to_all(data.sum);
  return coefficient * complex<double>(real(data.sum), imag(data.sum));
}

  /* Similar to make_g above, but now air/metal systems
     translation-invariant in one direction.  In this case, the
     kz-integral turns into a multiplication by -i/4*w(xi), and we
     simply solve the (lower-dimensional) kz = 0 system and multiply
     the the g(t) obtained from this result, rather than the usual
     g(t).  This function has the nice property that we can do the
     integral analytically. */
  complex<double> *make_casimir_gfunc_kz(double T, double dt, double sigma, field_type ft)
  {
    double tshift = (ft == E_stuff || ft == D_stuff) ? 0.0 : dt;
    T += 5 * dt; // allocate a few extra timesteps just in case
    
    int N = int(ceil(T / dt));
    C *g = new C[N];
    for (int i = 1; i < N; ++i) {
      double t = i * dt + tshift;
      g[i] = C(0,1.0)/(1.0*pi) * 0.5 * (2.0/(t*t*t) + 3.0*sigma/(2.0*t*t) + sigma*sigma/(2.0*t));
    }
    return g;
  }

} // namespace meep