File: h5fields.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (476 lines) | stat: -rw-r--r-- 15,571 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

/* HDF5 output of fields and arbitrary functions thereof.  Works
   very similarly to integrate.cpp (using fields::loop_in_chunks). */

#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "meep_internals.hpp"

using namespace std;

namespace meep {

/***************************************************************************/

typedef struct {
  // information related to the HDF5 dataset (its size, etcetera)
  h5file *file;
  ivec min_corner, max_corner;
  int num_chunks;
  realnum *buf;
  size_t bufsz;
  int rank;
  direction ds[3];

  int reim; // whether to output the real or imaginary part

  // the function to output and related info (offsets for averaging, etc.)
  int num_fields;
  const component *components;
  component *cS;
  complex<double> *ph;
  complex<double> *fields;
  ptrdiff_t *offsets;
  int ninveps;
  component inveps_cs[3];
  direction inveps_ds[3];
  int ninvmu;
  component invmu_cs[3];
  direction invmu_ds[3];
  field_function fun;
  void *fun_data_;
} h5_output_data;

#define UNUSED(x) (void) x // silence compiler warnings

static void h5_findsize_chunkloop(fields_chunk *fc, int ichnk, component cgrid,
				  ivec is, ivec ie,
				  vec s0, vec s1, vec e0, vec e1,
				  double dV0, double dV1,
				  ivec shift, complex<double> shift_phase,
				  const symmetry &S, int sn,
				  void *data_)
{
  UNUSED(ichnk);UNUSED(cgrid);UNUSED(s0);UNUSED(s1);UNUSED(e0);UNUSED(e1);
  UNUSED(dV0);UNUSED(dV1);UNUSED(shift_phase);
  h5_output_data *data = (h5_output_data *) data_;
  ivec isS = S.transform(is, sn) + shift;
  ivec ieS = S.transform(ie, sn) + shift;
  data->min_corner = min(data->min_corner, min(isS, ieS));
  data->max_corner = max(data->max_corner, max(isS, ieS));
  data->num_chunks++;
  size_t bufsz = 1;
  LOOP_OVER_DIRECTIONS(fc->gv.dim, d)
    bufsz *= (ie.in_direction(d) - is.in_direction(d)) / 2 + 1;
  data->bufsz = max(data->bufsz, bufsz);
}

static void h5_output_chunkloop(fields_chunk *fc, int ichnk, component cgrid,
				ivec is, ivec ie,
				vec s0, vec s1, vec e0, vec e1,
				double dV0, double dV1,
				ivec shift, complex<double> shift_phase,
				const symmetry &S, int sn,
				void *data_)
{
  UNUSED(ichnk);UNUSED(cgrid);UNUSED(s0);UNUSED(s1);UNUSED(e0);UNUSED(e1);
  UNUSED(dV0);UNUSED(dV1);
  h5_output_data *data = (h5_output_data *) data_;

  //-----------------------------------------------------------------------//
  // Find output chunk dimensions and strides, etc.

  size_t start[3]={0,0,0}, count[3]={1,1,1};
  ptrdiff_t offset[3]={0,0,0}, stride[3]={1,1,1};

  ivec isS = S.transform(is, sn) + shift;
  ivec ieS = S.transform(ie, sn) + shift;

  // figure out what yucky_directions (in LOOP_OVER_IVECS)
  // correspond to what directions in the transformed vectors (in output).
  ivec permute(zero_ivec(fc->gv.dim));
  for (int i = 0; i < 3; ++i)
    permute.set_direction(fc->gv.yucky_direction(i), i);
  permute = S.transform_unshifted(permute, sn);
  LOOP_OVER_DIRECTIONS(permute.dim, d)
    permute.set_direction(d, abs(permute.in_direction(d)));

  // compute the size of the chunk to output, and its strides etc.
  for (int i = 0; i < data->rank; ++i) {
    direction d = data->ds[i];
    int isd = isS.in_direction(d), ied = ieS.in_direction(d);
    start[i] = (min(isd, ied) - data->min_corner.in_direction(d)) / 2;
    count[i] = abs(ied - isd) / 2 + 1;
    if (ied < isd) offset[permute.in_direction(d)] = count[i] - 1;
  }
  for (int i = 0; i < data->rank; ++i) {
    direction d = data->ds[i];
    int j = permute.in_direction(d);
    for (int k = i + 1; k < data->rank; ++k) stride[j] *= count[k];
    offset[j] *= stride[j];
    if (offset[j]) stride[j] *= -1;
  }

  //-----------------------------------------------------------------------//
  // Compute the function to output, exactly as in fields::integrate,
  // except that here we store its values in a buffer instead of integrating.

  ptrdiff_t *off = data->offsets;
  component *cS = data->cS;
  complex<double> *fields = data->fields, *ph = data->ph;
  const component *iecs = data->inveps_cs;
  const direction *ieds = data->inveps_ds;
  ptrdiff_t ieos[6];
  const component *imcs = data->invmu_cs;
  const direction *imds = data->invmu_ds;
  ptrdiff_t imos[6];

  for (int i = 0; i < data->num_fields; ++i) {
    cS[i] = S.transform(data->components[i], -sn);
    if (cS[i] == Dielectric || cS[i] == Permeability)
      ph[i] = 1.0;
    else {
      fc->gv.yee2cent_offsets(cS[i], off[2*i], off[2*i+1]);
      ph[i] = shift_phase * S.phase_shift(cS[i], sn);
    }
  }
  for (int k = 0; k < data->ninveps; ++k)
    fc->gv.yee2cent_offsets(iecs[k], ieos[2*k], ieos[2*k+1]);
  for (int k = 0; k < data->ninvmu; ++k)
    fc->gv.yee2cent_offsets(imcs[k], imos[2*k], imos[2*k+1]);

  vec rshift(shift * (0.5*fc->gv.inva));
  LOOP_OVER_IVECS(fc->gv, is, ie, idx) {
    IVEC_LOOP_LOC(fc->gv, loc);
    loc = S.transform(loc, sn) + rshift;

    for (int i = 0; i < data->num_fields; ++i) {
      if (cS[i] == Dielectric) {
	double tr = 0.0;
	for (int k = 0; k < data->ninveps; ++k) {
	  const realnum *ie = fc->s->chi1inv[iecs[k]][ieds[k]];
	  if (ie) tr += (ie[idx] + ie[idx+ieos[2*k]] + ie[idx+ieos[1+2*k]]
			 + ie[idx+ieos[2*k]+ieos[1+2*k]]);
	  else tr += 4; // default inveps == 1
	}
	fields[i] = (4 * data->ninveps) / tr;
      }
      else if (cS[i] == Permeability) {
	double tr = 0.0;
	for (int k = 0; k < data->ninvmu; ++k) {
	  const realnum *im = fc->s->chi1inv[imcs[k]][imds[k]];
	  if (im) tr += (im[idx] + im[idx+imos[2*k]] + im[idx+imos[1+2*k]]
			 + im[idx+imos[2*k]+imos[1+2*k]]);
	  else tr += 4; // default invmu == 1
	}
	fields[i] = (4 * data->ninvmu) / tr;
      }
      else {
	double f[2];
	for (int k = 0; k < 2; ++k)
	  if (fc->f[cS[i]][k])
	    f[k] = 0.25 * (fc->f[cS[i]][k][idx]
			   + fc->f[cS[i]][k][idx+off[2*i]]
			   + fc->f[cS[i]][k][idx+off[2*i+1]]
			   + fc->f[cS[i]][k][idx+off[2*i]+off[2*i+1]]);
	  else
	    f[k] = 0;
	fields[i] = complex<double>(f[0], f[1]) * ph[i];
      }
    }

    complex<double> fun = data->fun(fields, loc, data->fun_data_);
    ptrdiff_t idx2 = ((((offset[0] + offset[1] + offset[2])
		  + loop_i1 * stride[0])
		 + loop_i2 * stride[1]) + loop_i3 * stride[2]);
    data->buf[idx2] = data->reim ? imag(fun) : real(fun);
  }

  //-----------------------------------------------------------------------//

  data->file->write_chunk(data->rank, start, count, data->buf);
}

void fields::output_hdf5(h5file *file, const char *dataname,
			 int num_fields, const component *components,
			 field_function fun, void *fun_data_, int reim,
			 const volume &where,
			 bool append_data,
                         bool single_precision) {
  am_now_working_on(FieldOutput);
  h5_output_data data;

  data.file = file;
  data.min_corner = gv.round_vec(where.get_max_corner()) + one_ivec(gv.dim);
  data.max_corner = gv.round_vec(where.get_min_corner()) - one_ivec(gv.dim);
  data.num_chunks = 0;
  data.bufsz = 0;
  data.reim = reim;

  loop_in_chunks(h5_findsize_chunkloop, (void *) &data,
	    where, Centered, true, true);

  file->prevent_deadlock(); // can't hold a lock since *_to_all is collective
  data.max_corner = max_to_all(data.max_corner);
  data.min_corner = -max_to_all(-data.min_corner); // i.e., min_to_all
  data.num_chunks = sum_to_all(data.num_chunks);
  if (data.num_chunks == 0 || !(data.min_corner <= data.max_corner))
    return; // no data to write;

  int rank = 0;
  size_t dims[3];
  LOOP_OVER_DIRECTIONS(gv.dim, d) {
    if (rank >= 3) abort("too many dimensions in output_hdf5");
    size_t n = std::max(0, (data.max_corner.in_direction(d) - data.min_corner.in_direction(d)) / 2 + 1);

    if (n > 1) {
      data.ds[rank] = d;
      dims[rank++] = n;
    }
  }
  data.rank = rank;

  file->create_or_extend_data(dataname, rank, dims,
                              append_data, single_precision);

  data.buf = new realnum[data.bufsz];

  data.num_fields = num_fields;
  data.components = components;
  data.cS = new component[num_fields];
  data.ph = new complex<double>[num_fields];
  data.fields = new complex<double>[num_fields];
  data.fun = fun;
  data.fun_data_ = fun_data_;

  /* compute inverse-epsilon directions for computing Dielectric fields */
  data.ninveps = 0;
  bool needs_dielectric = false;
  for (int i = 0; i < num_fields; ++i)
    if (components[i] == Dielectric) { needs_dielectric = true; break; }
  if (needs_dielectric)
    FOR_ELECTRIC_COMPONENTS(c) if (gv.has_field(c)) {
      if (data.ninveps == 3) abort("more than 3 field components??");
      data.inveps_cs[data.ninveps] = c;
      data.inveps_ds[data.ninveps] = component_direction(c);
      ++data.ninveps;
    }

  /* compute inverse-mu directions for computing Permeability fields */
  data.ninvmu = 0;
  bool needs_permeability = false;
  for (int i = 0; i < num_fields; ++i)
    if (components[i] == Permeability) { needs_permeability = true; break; }
  if (needs_permeability)
    FOR_MAGNETIC_COMPONENTS(c) if (gv.has_field(c)) {
      if (data.ninvmu == 3) abort("more than 3 field components??");
      data.invmu_cs[data.ninvmu] = c;
      data.invmu_ds[data.ninvmu] = component_direction(c);
      ++data.ninvmu;
    }

  data.offsets = new ptrdiff_t[2 * num_fields];
  for (int i = 0; i < 2 * num_fields; ++i)
    data.offsets[i] = 0;

  loop_in_chunks(h5_output_chunkloop, (void *) &data,
		 where, Centered, true, true);

  delete[] data.offsets;
  delete[] data.fields;
  delete[] data.ph;
  delete[] data.cS;
  delete[] data.buf;
  file->done_writing_chunks();
  finished_working();
}

/***************************************************************************/

void fields::output_hdf5(const char *dataname,
                         int num_fields, const component *components,
                         field_function fun, void *fun_data_,
                         const volume &where,
			 h5file *file,
                         bool append_data,
                         bool single_precision,
			 const char *prefix,
			 bool real_part_only)
{
  bool delete_file;
  if ((delete_file = !file))
    file = open_h5file(dataname, h5file::WRITE, prefix, true);

  if (real_part_only) {
    output_hdf5(file, dataname, num_fields, components, fun, fun_data_,
		0, where, append_data, single_precision);
  }
  else {
    int len = strlen(dataname) + 5;
    char *dataname2 = new char[len];
    snprintf(dataname2, len, "%s%s", dataname, ".r");
    output_hdf5(file, dataname2, num_fields, components, fun, fun_data_,
		0, where, append_data, single_precision);
    snprintf(dataname2, len, "%s%s", dataname, ".i");
    output_hdf5(file, dataname2, num_fields, components, fun, fun_data_,
		1, where, append_data, single_precision);
    delete[] dataname2;
  }
  if (delete_file) delete file;
}

/***************************************************************************/

typedef struct {
  field_rfunction fun;
  void *fun_data_;
} rintegrand_data;

static complex<double> rintegrand_fun(const complex<double> *fields,
                                     const vec &loc,
                                     void *data_)
{
  rintegrand_data *data = (rintegrand_data *) data_;
  return data->fun(fields, loc, data->fun_data_);
}

void fields::output_hdf5(const char *dataname,
                         int num_fields, const component *components,
                         field_rfunction fun, void *fun_data_,
                         const volume &where,
			 h5file *file,
                         bool append_data,
                         bool single_precision,
			 const char *prefix)
{
  bool delete_file;
  if ((delete_file = !file))
    file = open_h5file(dataname, h5file::WRITE, prefix, true);

  rintegrand_data data; data.fun = fun; data.fun_data_ = fun_data_;
  output_hdf5(file, dataname, num_fields, components, rintegrand_fun,
	      (void *) &data, 0, where, append_data, single_precision);

  if (delete_file) delete file;
}

/***************************************************************************/

static complex<double> component_fun(const complex<double> *fields,
				     const vec &loc,
				     void *data_)
{
     (void) loc; // unused
     (void) data_; // unused
     return fields[0];
}

void fields::output_hdf5(component c,
			 const volume &where,
			 h5file *file,
			 bool append_data,
                         bool single_precision,
			 const char *prefix) {
  if (is_derived(int(c))) {
    output_hdf5(derived_component(c),
		where, file, append_data, single_precision, prefix);
    return;
  }

  if (coordinate_mismatch(gv.dim, c)) return;

  char dataname[256];
  bool has_imag = !is_real && c != Dielectric && c != Permeability;

  bool delete_file;
  if ((delete_file = !file))
    file = open_h5file(component_name(c), h5file::WRITE, prefix, true);

  snprintf(dataname, 256, "%s%s", component_name(c), has_imag ? ".r" : "");
  output_hdf5(file, dataname, 1, &c, component_fun, 0, 0, where,
	      append_data, single_precision);
  if (has_imag) {
    snprintf(dataname, 256, "%s.i", component_name(c));
    output_hdf5(file, dataname, 1, &c, component_fun, 0, 1, where,
		append_data, single_precision);
  }

  if (delete_file) delete file;
}

/***************************************************************************/

void fields::output_hdf5(derived_component c,
			 const volume &where,
			 h5file *file,
			 bool append_data,
                         bool single_precision,
			 const char *prefix) {
  if (!is_derived(int(c))) {
    output_hdf5(component(c),
		where, file, append_data, single_precision, prefix);
    return;
  }

  if (coordinate_mismatch(gv.dim, c)) return;

  int nfields;
  component cs[12];
  field_rfunction fun = derived_component_func(c, gv, nfields, cs);

  output_hdf5(component_name(c), nfields, cs, fun, &nfields, where,
	      file, append_data, single_precision, prefix);
}

/***************************************************************************/

const char *fields::h5file_name(const char *name,
				const char *prefix, bool timestamp)
{
  const int buflen = 1024;
  static char filename[buflen];
  char time_step_string[32] = "";

  if (timestamp) {
    if (dt >= 0.01 && dt < 10)
      snprintf(time_step_string, 32, "-%09.2f", time());
    else
      snprintf(time_step_string, 32, "-%09d", t);
  }

  snprintf(filename, buflen, "%s/" "%s%s" "%s" "%s" ".h5",
	   outdir,
	   prefix ? prefix : "", prefix && prefix[0] ? "-" : "",
	   name, time_step_string);
  return filename;
}

h5file *fields::open_h5file(const char *name, h5file::access_mode mode,
			    const char *prefix, bool timestamp)
{
  const char *filename = h5file_name(name, prefix, timestamp);
  if (!quiet && mode == h5file::WRITE)
    master_printf("creating output file \"%s\"...\n", filename);
  return new h5file(filename, mode, true);
}

} // namespace meep