File: monitor.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (458 lines) | stat: -rw-r--r-- 13,693 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "meep.hpp"
#include "meep_internals.hpp"

#include "config.h"
#if defined(HAVE_LIBFFTW3)
#  include <fftw3.h>
#elif defined(HAVE_LIBDFFTW)
#  include <dfftw.h>
#elif defined(HAVE_LIBFFTW)
#  include <fftw.h>
#endif
#if defined(HAVE_LIBFFTW3) || defined(HAVE_LIBFFTW) || defined(HAVE_LIBDFFTW)
#  define HAVE_SOME_FFTW 1
#else
#  define HAVE_SOME_FFTW 0
#endif

/* Below are the monitor point routines. */

using namespace std;

namespace meep {

monitor_point::monitor_point() {
  next = NULL;
}

monitor_point::~monitor_point() {
  if (next) delete next;
}

inline complex<double> getcm(const realnum * const f[2], size_t i) {
  return complex<double>(f[0][i],f[1][i]);
}

static void dumbsort(complex<double> val[8]) {
  for (int i=0;i<7;i++) {
    int lowest = i;
    for (int j=i+1;j<8;j++) if (abs(val[j]) < abs(val[lowest])) lowest = j;
    complex<double> tmp = val[i];
    val[i] = val[lowest];
    val[lowest] = tmp;
  }
}

static void dumbsort(double val[8]) {
  for (int i=0;i<7;i++) {
    int lowest = i;
    for (int j=i+1;j<8;j++) if (abs(val[j]) < abs(val[lowest])) lowest = j;
    double tmp = val[i];
    val[i] = val[lowest];
    val[lowest] = tmp;
  }
}

void fields::get_point(monitor_point *pt, const vec &loc) const {
  if (pt == NULL) abort("Error:  get_point passed a null pointer!\n");
  for (int i=0;i<10;i++) pt->f[i] = 0.0;
  pt->loc = loc;
  pt->t = time();
  FOR_COMPONENTS(c)
    if (gv.has_field(c))
      pt->f[c] = get_field(c,loc);
}

complex<double> fields::get_field(int c, const vec &loc) const {
  return (is_derived(c) ? get_field(derived_component(c), loc)
	  : get_field(component(c), loc));
}

double fields::get_field(derived_component c, const vec &loc) const {
  component c1 = Ex, c2 = Ex;
  double sum = 0;
  switch (c) {
  case Sx: case Sy: case Sz: case Sr: case Sp:
    switch (c) {
    case Sx: c1 = Ey; c2 = Hz; break;
    case Sy: c1 = Ez; c2 = Hx; break;
    case Sz: c1 = Ex; c2 = Hy; break;
    case Sr: c1 = Ep; c2 = Hz; break;
    case Sp: c1 = Ez; c2 = Hr; break;
    default: break; // never
    }
    sum += real(conj(get_field(c1, loc)) * get_field(c2, loc));
    sum -= real(conj(get_field(direction_component(Ex, component_direction(c2)), loc)) * get_field(direction_component(Hx, component_direction(c1)), loc));
    return sum;
  case EnergyDensity: case D_EnergyDensity: case H_EnergyDensity:
    if (c != H_EnergyDensity)
      FOR_ELECTRIC_COMPONENTS(c1) if (gv.has_field(c1)) {
	c2 = direction_component(Dx, component_direction(c1));
	sum += real(conj(get_field(c1, loc)) * get_field(c2, loc));
      }
    if (c != D_EnergyDensity)
      FOR_MAGNETIC_COMPONENTS(c1) if (gv.has_field(c1)) {
	complex<double> f = get_field(c1, loc);
	sum += real(conj(f) * f);
      }
    return sum * 0.5;
  default: abort("unknown derived_component in get_field");
  }
}

complex<double> fields::get_field(component c, const vec &loc) const {
  switch (c) {
  case Dielectric:
    return get_eps(loc);
  case Permeability:
    return get_mu(loc);
  default:
    ivec ilocs[8];
    double w[8];
    complex<double> val[8];
    for (int i=0;i<8;i++) val[i] = 0.0;
    gv.interpolate(c, loc, ilocs, w);
    for (int argh=0;argh<8&&w[argh];argh++)
      val[argh] = w[argh]*get_field(c,ilocs[argh]);
    dumbsort(val);
    complex<double> res = 0.0;
    for (int i=0;i<8;i++) res += val[i];
    return res;
  }
}

complex<double> fields::get_field(component c, const ivec &origloc) const {
  ivec iloc = origloc;
  complex<double> kphase = 1.0;
  locate_point_in_user_volume(&iloc, &kphase);
  for (int sn=0;sn<S.multiplicity();sn++)
    for (int i=0;i<num_chunks;i++)
      if (chunks[i]->gv.contains(S.transform(iloc,sn)))
        return S.phase_shift(c,sn)*kphase*
          chunks[i]->get_field(S.transform(c,sn),S.transform(iloc,sn));
  return 0.0;
}

complex<double> fields_chunk::get_field(component c, const ivec &iloc) const {
  complex<double> res = 0.0;
  if (f[c][0] && f[c][1]) res = getcm(f[c], gv.index(c, iloc));
  else if (f[c][0]) res = f[c][0][gv.index(c,iloc)];
  return broadcast(n_proc(), res);
}

/* Bounding box for zero-communication get_field, below.  This is the
   largest box in which you can interpolate the fields without communication.
   It is *not* necessarily non-overlapping with other chunks. */
volume fields_chunk::get_field_gv(component c) const {
  switch (c) {
  case Dielectric: case Permeability:
    c = gv.eps_component();
  default:
    return volume(gv.loc(c, 0), gv.loc(c, gv.ntot() - 1));
  }
}

/* Non-collective, zero-communication get_field... loc *must*
   be in get_field_gv(c). */
complex<double> fields_chunk::get_field(component c, const vec &loc) const {
  ivec ilocs[8];
  double w[8];
  switch (c) {
  case Permeability: abort("non-collective get_field(mu) unimplemented");
  case Dielectric: abort("non-collective get_field(eps) unimplemented");
  default: {
    gv.interpolate(c, loc, ilocs, w);
    complex<double> res = 0.0;
    for (int i = 0; i < 8 && w[i] != 0.0; ++i) {
      if (!gv.contains(ilocs[i]))
      	abort("invalid loc in chunk get_field, weight = %g", w[i]);
      if (f[c][0] && f[c][1]) res += getcm(f[c], gv.index(c, ilocs[i])) * w[i];
      else if (f[c][0]) res += f[c][0][gv.index(c,ilocs[i])] * w[i];
    }
    return res;
  }
  }
}

double fields::get_chi1inv(component c, direction d,
			  const ivec &origloc) const {
  ivec iloc = origloc;
  complex<double> aaack = 1.0;
  locate_point_in_user_volume(&iloc, &aaack);
  for (int sn=0;sn<S.multiplicity();sn++)
    for (int i=0;i<num_chunks;i++)
      if (chunks[i]->gv.contains(S.transform(iloc,sn))) {
      	signed_direction ds = S.transform(d,sn);
        return chunks[i]->get_chi1inv(S.transform(c,sn), ds.d,
                        				      S.transform(iloc,sn))
        	     * (ds.flipped ^ S.transform(component_direction(c),sn).flipped
            	 ? -1 : 1);
      }
  return 0.0;
}

double fields_chunk::get_chi1inv(component c, direction d,
			     const ivec &iloc) const {
  double res = 0.0;
  if (is_mine()) res = s->chi1inv[c][d] ? s->chi1inv[c][d][gv.index(c, iloc)]
		   : (d == component_direction(c) ? 1.0 : 0);
  return broadcast(n_proc(), res);
}

double fields::get_chi1inv(component c, direction d,
			  const vec &loc) const {
  ivec ilocs[8];
  double w[8];
  double val[8];
  for (int i=0;i<8;i++) val[i] = 0.0;
  gv.interpolate(c, loc, ilocs, w);
  for (int argh=0;argh<8&&w[argh];argh++)
    val[argh] = w[argh]*get_chi1inv(c,d,ilocs[argh]);
  dumbsort(val);
  double res = 0.0;
  for (int i=0;i<8;i++) res += val[i];
  return res;
}

double fields::get_eps(const vec &loc) const {
  double tr = 0;
  int nc = 0;
  FOR_ELECTRIC_COMPONENTS(c)
    if (gv.has_field(c)) {
      tr += get_chi1inv(c, component_direction(c), loc);
      ++nc;
    }
  return nc / tr;
}

double fields::get_mu(const vec &loc) const {
  double tr = 0;
  int nc = 0;
  FOR_MAGNETIC_COMPONENTS(c)
    if (gv.has_field(c)) {
      tr += get_chi1inv(c, component_direction(c), loc);
      ++nc;
    }
  return nc / tr;
}

double structure::get_chi1inv(component c, direction d,
			     const ivec &origloc) const {
  ivec iloc = origloc;
  for (int sn=0;sn<S.multiplicity();sn++)
    for (int i=0;i<num_chunks;i++)
      if (chunks[i]->gv.contains(S.transform(iloc,sn))) {
	signed_direction ds = S.transform(d,sn);
        return chunks[i]->get_chi1inv(S.transform(c,sn), ds.d,
				      S.transform(iloc,sn))
	  * (ds.flipped ^ S.transform(component_direction(c),sn).flipped
		? -1 : 1);
      }
  return 0.0;
}

double structure_chunk::get_chi1inv(component c, direction d,
				    const ivec &iloc) const {
  double res = 0.0;
  if (is_mine()) res = chi1inv[c][d] ? chi1inv[c][d][gv.index(c, iloc)]
		   : (d == component_direction(c) ? 1.0 : 0);
  return broadcast(n_proc(), res);
}

double structure::get_chi1inv(component c, direction d,
			      const vec &loc) const {
  ivec ilocs[8];
  double w[8];
  double val[8];
  for (int i=0;i<8;i++) val[i] = 0.0;
  gv.interpolate(c, loc, ilocs, w);
  for (int argh=0;argh<8&&w[argh];argh++)
    val[argh] = w[argh]*get_chi1inv(c,d,ilocs[argh]);
  dumbsort(val);
  double res = 0.0;
  for (int i=0;i<8;i++) res += val[i];
  return res;
}

double structure::get_eps(const vec &loc) const {
  double tr = 0;
  int nc = 0;
  FOR_ELECTRIC_COMPONENTS(c)
    if (gv.has_field(c)) {
      tr += get_chi1inv(c, component_direction(c), loc);
      ++nc;
    }
  return nc / tr;
}

double structure::get_mu(const vec &loc) const {
  double tr = 0;
  int nc = 0;
  FOR_MAGNETIC_COMPONENTS(c)
    if (gv.has_field(c)) {
      tr += get_chi1inv(c, component_direction(c), loc);
      ++nc;
    }
  return nc / tr;
}

monitor_point *fields::get_new_point(const vec &loc, monitor_point *the_list) const {
  monitor_point *p = new monitor_point();
  get_point(p, loc);
  p->next = the_list;
  return p;
}

complex<double> monitor_point::get_component(component w) {
  return f[w];
}

double monitor_point::poynting_in_direction(direction d) {
  direction d1 = cycle_direction(loc.dim, d, 1);
  direction d2 = cycle_direction(loc.dim, d, 2);

  // below Ex and Hx are used just to say that we want electric or magnetic component
  complex<double> E1 = get_component(direction_component(Ex, d1));
  complex<double> E2 = get_component(direction_component(Ex, d2));
  complex<double> H1 = get_component(direction_component(Hx, d1));
  complex<double> H2 = get_component(direction_component(Hx, d2));

  return (real(E1)*real(H2) - real(E2)*real(H1)) + (imag(E1)*imag(H2) - imag(E2)*imag(H1));
}

double monitor_point::poynting_in_direction(vec dir) {
  if (dir.dim != loc.dim)
    abort("poynting_in_direction: dir.dim != loc.dim\n");
  dir = dir / abs(dir);
  double result = 0.0;
  LOOP_OVER_DIRECTIONS(dir.dim, d)
    result += dir.in_direction(d) * poynting_in_direction(d);
  return result;
}

void monitor_point::fourier_transform(component w,
                                      complex<double> **a, complex<double> **f,
                                      int *numout, double fmin, double fmax,
                                      int maxbands) {
  int n = 1;
  monitor_point *p = next;
  double tmax = t, tmin = t;
  while (p) {
    n++;
    if (p->t > tmax) tmax = p->t;
    if (p->t < tmin) tmin = p->t;
    p = p->next;
  }
  p = this;
  complex<double> *d = new complex<double>[n];
  for (int i=0;i<n;i++,p=p->next) {
    d[i] = p->get_component(w);
  }
  if (fmin > 0.0) { // Get rid of any static fields_chunk!
    complex<double> mean = 0.0;
    for (int i=0;i<n;i++) mean += d[i];
    mean /= n;
    for (int i=0;i<n;i++) d[i] -= mean;
  }
#if HAVE_SOME_FFTW
  if ((fmin > 0.0 || fmax > 0.0) && maxbands > 0) {
#else
  if ((fmin <= 0.0 && fmax <= 0.0) || maxbands <= 0) {
    maxbands = n;
    fmin = 0; fmax = (n-1)*(1.0/(tmax-tmin));
  }
#endif
    *a = new complex<double>[maxbands];
    *f = new complex<double>[maxbands];
    *numout = maxbands;
    delete[] d;
    for (int i = 0;i<maxbands;i++) {
      double df = (maxbands == 1) ? 0.0 : (fmax-fmin)/(maxbands-1);
      (*f)[i] = fmin + i*df;
      (*a)[i] = 0.0;
      p = this;
      while (p) {
        double inside = 2*pi*real((*f)[i])*p->t;
        (*a)[i] += p->get_component(w)*complex<double>(cos(inside),sin(inside));
        p = p->next;
      }
      (*a)[i] /= (tmax-tmin);
    }
#if HAVE_SOME_FFTW
  } else {
    *numout = n;
    *a = new complex<double>[n];
    *f = d;
    fftw_complex *in = (fftw_complex *) d, *out = (fftw_complex *) *a;
    fftw_plan p;
#ifdef HAVE_LIBFFTW3
    p = fftw_plan_dft_1d(n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
    fftw_execute(p);
    fftw_destroy_plan(p);
#else
    p = fftw_create_plan(n, FFTW_FORWARD, FFTW_ESTIMATE);
    fftw_one(p, in, out);
    fftw_destroy_plan(p);
#endif
    for (int i=0;i<n;i++) {
      (*f)[i] = i*(1.0/(tmax-tmin));
      if (real((*f)[i]) > 0.5*n/(tmax-tmin)) (*f)[i] -= n/(tmax-tmin);
      (*a)[i] *= (tmax-tmin)/n;
    }
  }
#endif
}

void monitor_point::harminv(component w,
                            complex<double> **a, complex<double> **f,
                            int *numout, double fmin, double fmax,
                            int maxbands) {
  int n = 1;
  monitor_point *p = next;
  double tmax = t, tmin = t;
  while (p) {
    n++;
    if (p->t > tmax) tmax = p->t;
    if (p->t < tmin) tmin = p->t;
    p = p->next;
  }
  p = this;
  complex<double> *d = new complex<double>[n];
  for (int i=0;i<n;i++,p=p->next) {
    d[i] = p->get_component(w);
  }
  *a = new complex<double>[n];
  double *f_re = new double[n];
  double *f_im = new double[n];
  *numout = do_harminv(d, n, (tmax-tmin)/(n-1), fmin, fmax, maxbands,
                       *a, f_re, f_im, NULL);
  *f = new complex<double>[*numout];
  for (int i=0;i<*numout;i++)
    (*f)[i] = complex<double>(f_re[i],f_im[i]);
  delete[] f_re;
  delete[] f_im;
  delete[] d;
}

} // namespace meep