File: near2far.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (421 lines) | stat: -rw-r--r-- 14,704 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/* Near-to-far field transformation: compute DFT of tangential fields on
   a "near" surface, and use these (via the equivalence principle) to
   compute the fields on a "far" surface via the homogeneous-medium Green's
   function in 2d or 3d. */

#include <meep.hpp>
#include <assert.h>
#include "config.h"

using namespace std;

namespace meep {

dft_near2far::dft_near2far(dft_chunk *F_,
                           double fmin, double fmax, int Nf,
                           double eps_, double mu_,
                           const volume &where_):
 Nfreq(Nf), F(F_), eps(eps_), mu(mu_), where(where_)
{
  if (Nf <= 1) fmin = fmax = (fmin + fmax) * 0.5;
  freq_min = fmin;
  dfreq = Nf <= 1 ? 0.0 : (fmax - fmin) / (Nf - 1);
}

dft_near2far::dft_near2far(const dft_near2far &f):
 freq_min(f.freq_min), dfreq(f.dfreq), Nfreq(f.Nfreq), 
 F(f.F), eps(f.eps), mu(f.mu), where(f.where)
{ }

void dft_near2far::remove()
{
  while (F) {
    dft_chunk *nxt = F->next_in_dft;
    delete F;
    F = nxt;
  }
}

void dft_near2far::operator-=(const dft_near2far &st) {
  if (F && st.F) *F -= *st.F;
}

void dft_near2far::save_hdf5(h5file *file, const char *dprefix) {
  save_dft_hdf5(F, "F", file, dprefix);
}

void dft_near2far::load_hdf5(h5file *file, const char *dprefix) {
  load_dft_hdf5(F, "F", file, dprefix);
}

void dft_near2far::save_hdf5(fields &f, const char *fname, const char *dprefix,
			 const char *prefix) {
  h5file *ff = f.open_h5file(fname, h5file::WRITE, prefix);
  save_hdf5(ff, dprefix);
  delete ff;
}

void dft_near2far::load_hdf5(fields &f, const char *fname, const char *dprefix,
			 const char *prefix) {
  h5file *ff = f.open_h5file(fname, h5file::READONLY, prefix);
  load_hdf5(ff, dprefix);
  delete ff;
}

void dft_near2far::scale_dfts(complex<double> scale) {
  if (F) F->scale_dft(scale);
}

typedef void (*greenfunc)(std::complex<double> *EH, const vec &x,
                          double freq, double eps, double mu,
                          const vec &x0, component c0, std::complex<double>);

/* Given the field f0 correponding to current-source component c0 at
   x0, compute the E/H fields EH[6] (6 components) at x for a frequency
   freq in the homogeneous 3d medium eps and mu.

   Adapted from code by M. T. Homer Reid in his SCUFF-EM package
   (file scuff-em/src/libs/libIncField/PointSource.cc), which is GPL v2+. */
void green3d(std::complex<double> *EH, const vec &x,
             double freq, double eps, double mu,
             const vec &x0, component c0, std::complex<double> f0)
{
    vec rhat = x - x0;
    double r = abs(rhat);
    rhat = rhat / r;

    if (rhat.dim != D3) abort("wrong dimensionality in green3d");

    double n = sqrt(eps*mu);
    double k = 2*pi*freq*n;
    std::complex<double> ikr = std::complex<double>(0.0, k*r);
    double ikr2   = -(k*r)*(k*r);
    /* note that SCUFF-EM computes the fields from the dipole moment p,
       whereas we need it from the current J = -i*omega*p, so our result
       is divided by -i*omega compared to SCUFF */
    std::complex<double> expfac = f0 * polar(k*n/(4*pi*r), k*r + pi*0.5);
    double Z = sqrt(mu/eps);

    vec p = zero_vec(rhat.dim);
    p.set_direction(component_direction(c0), 1);
    double pdotrhat = p & rhat;
    vec rhatcrossp = vec(rhat.y() * p.z() -
                         rhat.z() * p.y(),
                         rhat.z() * p.x() -
                         rhat.x() * p.z(),
                         rhat.x() * p.y() -
                         rhat.y() * p.x());

    /* compute the various scalar quantities in the point source formulae */
    std::complex<double> term1 =  1.0 - 1.0/ikr + 1.0/ikr2;
    std::complex<double> term2 = (-1.0 + 3.0/ikr - 3.0/ikr2) * pdotrhat;
    std::complex<double> term3 = (1.0 - 1.0/ikr);

    /* now assemble everything based on source type */
    if (is_electric(c0)) {
        expfac /= eps;

        EH[0] = expfac * (term1*p.x() + term2*rhat.x());
        EH[1] = expfac * (term1*p.y() + term2*rhat.y());
        EH[2] = expfac * (term1*p.z() + term2*rhat.z());

        EH[3] = expfac*term3*rhatcrossp.x() / Z;
        EH[4] = expfac*term3*rhatcrossp.y() / Z;
        EH[5] = expfac*term3*rhatcrossp.z() / Z;
    }
    else if (is_magnetic(c0)) {
        expfac /= mu;

        EH[0] = -expfac*term3*rhatcrossp.x() * Z;
        EH[1] = -expfac*term3*rhatcrossp.y() * Z;
        EH[2] = -expfac*term3*rhatcrossp.z() * Z;

        EH[3] = expfac * (term1*p.x() + term2*rhat.x());
        EH[4] = expfac * (term1*p.y() + term2*rhat.y());
        EH[5] = expfac * (term1*p.z() + term2*rhat.z());
    }
    else
        abort("unrecognized source type");
}

#ifdef HAVE_LIBGSL
#  include <gsl/gsl_sf_bessel.h>
// hankel function J + iY
static std::complex<double> hankel(int n, double x) {
    return std::complex<double>(gsl_sf_bessel_Jn(n, x),
                                gsl_sf_bessel_Yn(n, x));
}
#else /* !HAVE_LIBGSL */
static std::complex<double> hankel(int n, double x) {
    (void) n; (void) x; // unused
    abort("GNU GSL library is required for Hankel functions");
}
#endif /* !HAVE_LIBGSL */

/* like green3d, but 2d Green's functions */
void green2d(std::complex<double> *EH, const vec &x,
             double freq, double eps, double mu,
             const vec &x0, component c0, std::complex<double> f0)
{
    vec rhat = x - x0;
    double r = abs(rhat);
    rhat = rhat / r;

    if (rhat.dim != D2) abort("wrong dimensionality in green2d");

    double omega = 2*pi*freq;
    double k = omega*sqrt(eps*mu);
    std::complex<double> ik = std::complex<double>(0.0, k);
    double kr = k*r;
    double Z = sqrt(mu/eps);
    std::complex<double> H0 = hankel(0, kr) * f0;
    std::complex<double> H1 = hankel(1, kr) * f0;
    std::complex<double> ikH1 = 0.25 * ik * H1;

    if (component_direction(c0) == meep::Z) {
        if (is_electric(c0)) { // Ez source
            EH[0] = EH[1] = 0.0;
            EH[2] = (-0.25*omega*mu) * H0;

            EH[3] = -rhat.y() * ikH1;
            EH[4] =  rhat.x() * ikH1;
            EH[5] = 0.0;
        }
        else /* (is_magnetic(c0)) */ { // Hz source
            EH[0] =  rhat.y() * ikH1;
            EH[1] = -rhat.x() * ikH1;
            EH[2] = 0.0;

            EH[3] = EH[4] = 0.0;
            EH[5] = (-0.25*omega*eps) * H0;
        }
    }
    else { /* in-plane source */
        std::complex<double> H2 = hankel(2, kr) * f0;

        vec p = zero_vec(rhat.dim);
        p.set_direction(component_direction(c0), 1);

        double pdotrhat = p & rhat;
        double rhatcrossp = rhat.x() * p.y() - rhat.y() * p.x();

        if (is_electric(c0)) { // Exy source
            EH[0] = -(rhat.x() * (pdotrhat/r * 0.25*Z)) * H1 +
                (rhat.y() * (rhatcrossp * omega*mu * 0.125)) * (H0 - H2);
            EH[1] = -(rhat.y() * (pdotrhat/r * 0.25*Z)) * H1 -
                (rhat.x() * (rhatcrossp * omega*mu * 0.125)) * (H0 - H2);
            EH[2] = 0.0;

            EH[3] = EH[4] = 0.0;
            EH[5] = -rhatcrossp * ikH1;
        }
        else /* (is_magnetic(c0)) */ { // Hxy source
            EH[0] = EH[1] = 0.0;
            EH[2] = rhatcrossp * ikH1;

            EH[3] = -(rhat.x() * (pdotrhat/r * 0.25/Z)) * H1 +
                (rhat.y() * (rhatcrossp * omega*eps * 0.125)) * (H0 - H2);
            EH[4] = -(rhat.y() * (pdotrhat/r * 0.25/Z)) * H1 -
                (rhat.x() * (rhatcrossp * omega*eps * 0.125)) * (H0 - H2);
            EH[5] = 0.0;
        }
    }
}

void dft_near2far::farfield_lowlevel(std::complex<double> *EH, const vec &x)
{
    if (x.dim != D3 && x.dim != D2)
        abort("only 2d or 3d far-field computation is supported");
    greenfunc green = x.dim == D2 ? green2d : green3d;

    std::complex<double> EH6[6];
    for (int i = 0; i < 6 * Nfreq; ++i)
        EH[i] = 0.0;

    for (dft_chunk *f = F; f; f = f->next_in_dft) {
        assert(Nfreq == f->Nomega);

        component c0 = component(f->vc); /* equivalent source component */

        vec rshift(f->shift * (0.5*f->fc->gv.inva));
        size_t idx_dft = 0;
        LOOP_OVER_IVECS(f->fc->gv, f->is, f->ie, idx) {
            IVEC_LOOP_LOC(f->fc->gv, x0);
            x0 = f->S.transform(x0, f->sn) + rshift;
            for (int i = 0; i < Nfreq; ++i) {
                double freq = freq_min + i*dfreq;
                green(EH6, x, freq, eps, mu, x0, c0, f->dft[Nfreq*idx_dft+i]);
                for (int j = 0; j < 6; ++j) EH[i*6 + j] += EH6[j];
            }
            idx_dft++;
        }
    }
}

std::complex<double> *dft_near2far::farfield(const vec &x) {
    std::complex<double> *EH, *EH_local;
    EH_local = new std::complex<double>[6 * Nfreq];
    farfield_lowlevel(EH_local, x);
    EH = new std::complex<double>[6 * Nfreq];
    sum_to_all(EH_local, EH, 6 * Nfreq);
    delete[] EH_local;
    return EH;
}

void dft_near2far::save_farfields(const char *fname, const char *prefix,
                                  const volume &where, double resolution) {
    /* compute output grid size etc. */
    size_t dims[4] = {1,1,1,1};
    double dx[3] = {0,0,0};
    direction dirs[3] = {X,Y,Z};
    int rank = 0;
    size_t N = 1;
    LOOP_OVER_DIRECTIONS(where.dim, d) {
        dims[rank] = int(floor(where.in_direction(d) * resolution));
        if (dims[rank] <= 1) {
            dims[rank] = 1;
            dx[rank] = 0;
        }
        else
            dx[rank] = where.in_direction(d) / (dims[rank] - 1);
        N *= dims[rank];
        dirs[rank++] = d;
    }

    if (N * Nfreq < 1) return; /* nothing to output */

    /* 6 x 2 x N x Nfreq array of fields in row-major order */
    realnum *EH = new realnum[6*2*N*Nfreq];
    realnum *EH_ = new realnum[6*2*N*Nfreq]; // temp array for sum_to_master

    /* fields for farfield_lowlevel for a single output point x */
    std::complex<double> *EH1 = new std::complex<double>[6*Nfreq];

    vec x(where.dim);
    for (size_t i0 = 0; i0 < dims[0]; ++i0) {
        x.set_direction(dirs[0], where.in_direction_min(dirs[0]) + i0*dx[0]);
        for (size_t i1 = 0; i1 < dims[1]; ++i1) {
            x.set_direction(dirs[1],
                            where.in_direction_min(dirs[1]) + i1*dx[1]);
            for (size_t i2 = 0; i2 < dims[2]; ++i2) {
                x.set_direction(dirs[2],
                                where.in_direction_min(dirs[2]) + i2*dx[2]);
                farfield_lowlevel(EH1, x);
                ptrdiff_t idx = (i0 * dims[1] + i1) * dims[2] + i2;
                for (int i = 0; i < Nfreq; ++i)
                    for (int k = 0; k < 6; ++k) {
                        EH_[((k * 2 + 0) * N + idx) * Nfreq + i] =
                            real(EH1[i * 6 + k]);
                        EH_[((k * 2 + 1) * N + idx) * Nfreq + i] =
                            imag(EH1[i * 6 + k]);
                    }
            }
        }
    }

    delete[] EH1;
    sum_to_master(EH_, EH, 6*2*N*Nfreq);
    delete[] EH_;

    /* collapse trailing singleton dimensions */
    while (rank > 0 && dims[rank-1] == 1)
        --rank;
    /* frequencies are the last dimension */
    if (Nfreq > 1)
        dims[rank++] = Nfreq;

    /* output to a file with one dataset per component & real/imag part */
    if (am_master()) {
        const int buflen = 1024;
        static char filename[buflen];
        snprintf(filename, buflen, "%s%s%s.h5",
                 prefix ? prefix : "", prefix && prefix[0] ? "-" : "",
                 fname);
        h5file ff(filename, h5file::WRITE, false);
        component c[6] = {Ex,Ey,Ez,Hx,Hy,Hz};
        char dataname[128];
        for (int k = 0; k < 6; ++k)
            for (int reim = 0; reim < 2; ++reim) {
                snprintf(dataname, 128, "%s.%c",
                         component_name(c[k]), "ri"[reim]);
                ff.write(dataname, rank, dims, EH + (k*2 + reim)*N*Nfreq);
            }
    }

    delete[] EH;
}

static double approxeq(double a, double b) { return fabs(a - b) < 0.5e-11 * (fabs(a) + fabs(b)); }

dft_near2far fields::add_dft_near2far(const volume_list *where,
				double freq_min, double freq_max, int Nfreq){
  dft_chunk *F = 0; /* E and H chunks*/
  double eps = 0, mu = 0;
  volume everywhere = where->v;

  for (const volume_list *w = where; w; w = w->next) {
      everywhere = everywhere | where->v;
      direction nd = component_direction(w->c);
      if (nd == NO_DIRECTION) nd = normal_direction(w->v);
      if (nd == NO_DIRECTION) abort("unknown dft_near2far normal");
      direction fd[2];

      double weps = get_eps(w->v.center());
      double wmu = get_mu(w->v.center());
      if (w != where && !(approxeq(eps, weps) && approxeq(mu, wmu)))
          abort("dft_near2far requires surfaces in a homogeneous medium");
      eps = weps;
      mu = wmu;

      /* two transverse directions to normal (in cyclic order to get
         correct sign s below) */
      switch (nd) {
      case X: fd[0] = Y; fd[1] = Z; break;
      case Y: fd[0] = Z; fd[1] = X; break;
      case R: fd[0] = P; fd[1] = Z; break;
      case P: fd[0] = Z; fd[1] = R; break;
      case Z:
          if (gv.dim == Dcyl)
              fd[0] = R, fd[1] = P;
          else
              fd[0] = X, fd[1] = Y;
          break;
      default: abort("invalid normal direction in dft_near2far!");
      }

      for (int i = 0; i < 2; ++i) { /* E or H */
          for (int j = 0; j < 2; ++j) { /* first or second component */
              component c = direction_component(i == 0 ? Ex : Hx, fd[j]);

              /* find equivalent source component c0 and sign s */
              component c0 = direction_component(i == 0 ? Hx : Ex, fd[1-j]);
              double s = j == 0 ? 1 : -1; /* sign of n x c */
              if (is_electric(c)) s = -s;

              F = add_dft(c, w->v, freq_min, freq_max, Nfreq,
                          true, s*w->weight, F, false, 1.0, false, c0);
          }
      }
  }

  return dft_near2far(F, freq_min, freq_max, Nfreq, eps, mu, everywhere);
}

} // namespace meep