File: h5test.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (502 lines) | stat: -rw-r--r-- 15,622 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#include <math.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <meep.hpp>
#include "meep_internals.hpp"
#include "config.h"
using namespace meep;
using namespace std;

const double xsize = 2.0;
const double ysize = 2.0;
const double zsize = 0.6;

const double r = 0.5;
const double eps_k = 2*pi / 1.0;

double funky_eps_2d(const vec &p_) {
  vec p = p_ - vec(xsize / 2, ysize / 2);
  if (fabs(p & p) < r * r)
    return 1.0;
  return 2.0 + cos(p.x() * eps_k) * cos(p.y() * eps_k);
}

double funky_eps_3d(const vec &p_) {
  vec p = p_ - vec(xsize / 2, ysize / 2, zsize / 2);
  if (fabs(p & p) < r * r)
    return 1.0;
  return 2.0 + cos(p.x() * eps_k) * cos(p.y() * eps_k) * cos(p.z() * eps_k);
}

symmetry make_identity(const grid_volume &gv)
{
  (void) gv; // unused
  return identity();
}

symmetry make_mirrorx(const grid_volume &gv)
{
  return mirror(X, gv);
}

symmetry make_mirrory(const grid_volume &gv)
{
  return mirror(Y, gv);
}

symmetry make_mirrorxy(const grid_volume &gv)
{
  return mirror(X, gv) + mirror(Y, gv);
}

symmetry make_rotate4z(const grid_volume &gv)
{
  return rotate4(Z, gv);
}

typedef symmetry (*symfunc)(const grid_volume &);

const double tol = sizeof(realnum) == sizeof(float) ? 1e-4 : 1e-8;
double compare(double a, double b, const char *nam, size_t i0,size_t i1,size_t i2) {
  if (fabs(a-b) > tol*tol + fabs(b) * tol || b != b) {
    master_printf("%g vs. %g differs by\t%g\n", a, b, fabs(a-b));
    master_printf("This gives a fractional error of %g\n", fabs(a-b)/fabs(b));
    abort("Error in %s at (%zd,%zd,%zd)\n", nam, i0,i1,i2);
  }
  return fabs(a-b);
}

double get_reim(complex<double> x, int reim)
{
  return reim ? imag(x) : real(x);
}

bool check_2d(double eps(const vec &), double a, int splitting, symfunc Sf,
	      double kx, double ky,
	      component src_c, int file_c,
	      volume file_gv,
	      bool real_fields, int expected_rank,
	      const char *name) {
  const grid_volume gv = vol2d(xsize, ysize, a);
  structure s(gv, eps, no_pml(), Sf(gv), splitting);
  fields f(&s);

  f.use_bloch(X, real_fields ? 0.0 : kx);
  f.use_bloch(Y, real_fields ? 0.0 : ky);

  if (real_fields) f.use_real_fields();
  f.add_point_source(src_c, 0.3, 2.0, 0.0, 1.0, gv.center(), 1.0, 1);

  if (file_c >= int(Dielectric)) real_fields = true;

  while (f.time() <= 3.0 && !interrupt)
    f.step();

  h5file *file = f.open_h5file(name);
  if (is_derived(file_c))
    f.output_hdf5(derived_component(file_c), file_gv, file);
  else
    f.output_hdf5(component(file_c), file_gv, file);

  file->write("stringtest", "Hello, world!\n");

  delete file;
  all_wait();
  sync();
  file = f.open_h5file(name, h5file::READONLY);

  char *str = file->read("stringtest");
  if (strcmp(str, "Hello, world!\n"))
       abort("Failed to read back string test from %s...", name);

  // compute corner coordinate of file data
  vec loc0(file_gv.get_min_corner());
  ivec iloc0(gv.dim);
  LOOP_OVER_DIRECTIONS(gv.dim, d) {
    iloc0.set_direction(d, 1+2*int(floor(loc0.in_direction(d)*a-.5)));
    if (file_gv.in_direction(d) == 0.0 &&
	1. - file_gv.in_direction_min(d)*a + 0.5*iloc0.in_direction(d)
	<= 1. + file_gv.in_direction_max(d)*a - 0.5*(iloc0.in_direction(d)+2))
      iloc0.set_direction(d, iloc0.in_direction(d) + 2); // snap to grid
  }
  loc0 = gv[iloc0];

  double data_min = meep::infinity, data_max = -meep::infinity;
  double err_max = 0;
  for (int reim = 0; reim < (real_fields ? 1 : 2); ++reim) {
    int rank;
    size_t dims[2] = {1, 1};

    char dataname[256];
    snprintf(dataname, 256, "%s%s", component_name(file_c),
	     reim ? ".i" : (real_fields ? "" : ".r"));

    realnum *h5data = file->read(dataname, &rank, dims, 2);
    file->prevent_deadlock(); // hackery
    if (!h5data)
	 abort("failed to read dataset %s:%s\n", name, dataname);
    if (rank != expected_rank)
	 abort("incorrect rank (%d instead of %d) in %s:%s\n",
	       rank, expected_rank, name, dataname);
    if (expected_rank == 1 &&
	file_gv.in_direction_min(X) == file_gv.in_direction_max(X)) {
      dims[1] = dims[0];
      dims[0] = 1;
    }
    vec loc(loc0.dim);
    for (size_t i0 = 0; i0 < dims[0]; ++i0) {
      for (size_t i1 = 0; i1 < dims[1]; ++i1) {
	loc.set_direction(X, loc0.in_direction(X) + i0 * gv.inva);
	loc.set_direction(Y, loc0.in_direction(Y) + i1 * gv.inva);
	ptrdiff_t idx = i0 * dims[1] + i1;

	/* Ugh, for rotational symmetries (which mix up components etc.),
	   we can't guarantee that a component is *exactly* the
	   same as its rotated version, and we don't know which one
	   was written to the file. */
	int cs = file_c;
	complex<double> ph = 1.0;
	double diff = fabs(get_reim(f.get_field(file_c, loc), reim) -
			   h5data[idx]);
	for (int sn = 1; sn < f.S.multiplicity(); ++sn) {
	  vec loc2(f.S.transform(loc, sn));
	  int cs2 = f.S.transform(file_c, sn);
	  complex<double> ph2 = f.S.phase_shift(cs2, -sn);
	  double diff2 = fabs(get_reim(f.get_field(cs2, loc2)*ph2, reim) -
			      h5data[idx]);
	  if (diff2 < diff) {
	    loc = loc2;
	    cs = cs2;
	    ph = ph2;
	    diff = diff2;
	  }
	}

	double err = compare(h5data[idx],
			     get_reim(f.get_field(cs, loc) * ph, reim),
			     name, i0,i1,0);
	err_max = max(err, err_max);
	data_min = min(data_min, h5data[idx]);
	data_max = max(data_max, h5data[idx]);
      }
    }
    delete[] h5data;
  }

  //file->remove();
  delete file;

  master_printf("Passed %s (%g..%g), err=%g\n", name,
		data_min, data_max,
		err_max / max(fabs(data_min), fabs(data_max)));

  return true;
}

bool check_3d(double eps(const vec &), double a, int splitting, symfunc Sf,
	      component src_c, int file_c,
	      volume file_gv,
	      bool real_fields, int expected_rank,
	      const char *name) {
  const grid_volume gv = vol3d(xsize, ysize, zsize, a);
  structure s(gv, eps, no_pml(), Sf(gv), splitting);
  fields f(&s);

  if (real_fields) f.use_real_fields();
  f.add_point_source(src_c, 0.3, 2.0, 0.0, 1.0, gv.center(), 1.0, 1);

  if (file_c >= Dielectric) real_fields = true;

  while (f.time() <= 3.0 && !interrupt)
    f.step();

  h5file *file = f.open_h5file(name);
  if (is_derived(file_c))
    f.output_hdf5(derived_component(file_c), file_gv, file);
  else
    f.output_hdf5(component(file_c), file_gv, file);

  file->write("stringtest", "Hello, world!\n");

  delete file;
  all_wait();
  sync();
  file = f.open_h5file(name, h5file::READONLY);

  char *str = file->read("stringtest");
  if (strcmp(str, "Hello, world!\n"))
       abort("Failed to read back string test from %s...", name);

  // compute corner coordinate of file data
  vec loc0(file_gv.get_min_corner());
  ivec iloc0(gv.dim);
  LOOP_OVER_DIRECTIONS(gv.dim, d) {
    iloc0.set_direction(d, 1+2*int(floor(loc0.in_direction(d)*a-.5)));
    if (file_gv.in_direction(d) == 0.0 &&
	1. - file_gv.in_direction_min(d)*a + 0.5*iloc0.in_direction(d)
	<= 1. + file_gv.in_direction_max(d)*a - 0.5*(iloc0.in_direction(d)+2))
      iloc0.set_direction(d, iloc0.in_direction(d) + 2); // snap to grid
  }
  loc0 = gv[iloc0];

  double data_min = meep::infinity, data_max = -meep::infinity;
  double err_max = 0;
  for (int reim = 0; reim < (real_fields ? 1 : 2); ++reim) {
    int rank;
    size_t dims[3] = {1, 1, 1};

    char dataname[256];
    snprintf(dataname, 256, "%s%s", component_name(file_c),
	     reim ? ".i" : (real_fields ? "" : ".r"));

    realnum *h5data = file->read(dataname, &rank, dims, 3);
    file->prevent_deadlock(); // hackery
    if (!h5data)
	 abort("failed to read dataset %s:%s\n", name, dataname);
    if (rank != expected_rank)
	 abort("incorrect rank (%d instead of %d) in %s:%s\n",
	       rank, expected_rank, name, dataname);
    vec loc(loc0.dim);
    for (size_t i0 = 0; i0 < dims[0]; ++i0) {
      for (size_t i1 = 0; i1 < dims[1]; ++i1) {
	for (size_t i2 = 0; i2 < dims[2]; ++i2) {
	  loc.set_direction(X, loc0.in_direction(X) + i0 * gv.inva);
	  loc.set_direction(Y, loc0.in_direction(Y) + i1 * gv.inva);
	  loc.set_direction(Z, loc0.in_direction(Z) + i2 * gv.inva);
	  ptrdiff_t idx = (i0 * dims[1] + i1) * dims[2] + i2;

	  /* Ugh, for rotational symmetries (which mix up components etc.),
	     we can't guarantee that a component is *exactly* the
	     same as its rotated version, and we don't know which one
	     was written to the file. */
	  int cs = file_c;
	  complex<double> ph = 1.0;
	  double diff = fabs(get_reim(f.get_field(file_c, loc), reim) -
			     h5data[idx]);
	  for (int sn = 1; sn < f.S.multiplicity(); ++sn) {
	    vec loc2(f.S.transform(loc, sn));
	    int cs2 = f.S.transform(file_c, sn);
	    complex<double> ph2 = f.S.phase_shift(cs2, -sn);
	    double diff2 = fabs(get_reim(f.get_field(cs2, loc2)*ph2, reim) -
				h5data[idx]);
	    if (diff2 < diff) {
	      loc = loc2;
	      cs = cs2;
	      ph = ph2;
	      diff = diff2;
	    }
	  }

	  double err = compare(h5data[idx],
			       get_reim(f.get_field(cs, loc)*ph,reim),
			       name, i0,i1,i2);
	  err_max = max(err, err_max);
	  data_min = min(data_min, h5data[idx]);
	  data_max = max(data_max, h5data[idx]);
	}
      }
    }
    delete[] h5data;
  }

  //file->remove();
  delete file;

  master_printf("Passed %s (%g..%g), err=%g\n", name,
		data_min, data_max,
		err_max / (max(fabs(data_min), fabs(data_max)) + 1e-16));

  return 1;
}

bool check_2d_monitor(double eps(const vec &),
		      double a, int splitting, symfunc Sf,
		      component src_c, int file_c,
		      const vec &pt,
		      bool real_fields,
		      const char *name) {
  const grid_volume gv = vol2d(xsize, ysize, a);
  structure s(gv, eps, no_pml(), Sf(gv), splitting);
  fields f(&s);

  if (real_fields) f.use_real_fields();
  f.add_point_source(src_c, 0.3, 2.0, 0.0, 1.0, gv.center(), 1.0, 1);

  if (file_c >= Dielectric) real_fields = true;

  h5file *file = f.open_h5file(name);

  // compute pt snapped onto dielectric grid
  ivec iloc0(gv.dim);
  LOOP_OVER_DIRECTIONS(gv.dim, d) {
    iloc0.set_direction(d, 1+2*int(floor(pt.in_direction(d)*a-.5)));
    if (1. - pt.in_direction(d)*a + 0.5*iloc0.in_direction(d)
	<= 1. + pt.in_direction(d)*a - 0.5*(iloc0.in_direction(d)+2))
      iloc0.set_direction(d, iloc0.in_direction(d) + 2); // snap to grid
  }
  vec pt0(gv[iloc0]);

  const double T = 3.0;
  int NT = int(T / f.dt) + 2;
  complex<double> *mon = new complex<double>[NT];
  while (f.time() <= T && !interrupt) {
    if (is_derived(file_c))
      f.output_hdf5(derived_component(file_c), volume(pt, pt), file, true);
    else
      f.output_hdf5(component(file_c), volume(pt, pt), file, true);
    mon[f.t] = f.get_field(file_c, pt0);
    f.step();
  }

  delete file;
  all_wait();
  sync();
  file = f.open_h5file(name, h5file::READONLY);

  double data_min = meep::infinity, data_max = -meep::infinity;
  double err_max = 0;

  for (int reim = 0; reim < (real_fields ? 1 : 2); ++reim) {
    int rank;
    size_t dims[1] = {1};

    char dataname[256];
    snprintf(dataname, 256, "%s%s", component_name(file_c),
	     reim ? ".i" : (real_fields ? "" : ".r"));

    realnum *h5data = file->read(dataname, &rank, dims, 2);
    file->prevent_deadlock(); // hackery
    if (!h5data)
	 abort("failed to read dataset %s:%s\n", file->file_name(), dataname);
    if (rank != 1)
      abort("monitor-point data is not one-dimensional");
    if (dims[0] != size_t(f.t))
      abort("incorrect size of monitor-point data");

    for (int i = 0; i < f.t; ++i) {
      double err = compare(h5data[i], get_reim(mon[i], reim), name, i,0,0);
      err_max = max(err, err_max);
      data_min = min(data_min, h5data[i]);
      data_max = max(data_max, h5data[i]);
    }
    delete[] h5data;
  }

  delete[] mon;

  //file->remove();
  delete file;

  master_printf("Passed %s (%g..%g), err=%g\n", name,
		data_min, data_max,
		err_max / max(fabs(data_min), fabs(data_max)));

  return 1;
}

int main(int argc, char **argv)
{
  const double a = 10.0;
  initialize mpi(argc, argv);
  int chances;
  quiet = true;
#ifdef HAVE_HDF5
  const double pad1 = 0.314159, pad2 = 0.27183, pad3 = 0.14142;

  volume gv_2d[4] = {
       volume(vec(pad1,pad2), vec(xsize-pad2,ysize-pad1)),
       volume(vec(-pad1,-pad2), vec(2*xsize-pad2,2*ysize-pad1)),
       volume(vec(pad1,pad2), vec(xsize-pad2,pad2)),
       volume(vec(pad1,pad2), vec(pad1,pad2)),
  };
  char gv_2d_name[4][20] = {"plane", "plane-supercell", "line", "point"};
  int gv_2d_rank[4] = {2,2,1,0};
  int tm_c[5] = {Dielectric, Ez, Hy, Sx, D_EnergyDensity};
  symfunc Sf2[5] = {make_identity, make_mirrorx, make_mirrory, make_mirrorxy,
		   make_rotate4z};
  char Sf2_name[5][32] = {"identity", "mirrorx", "mirrory", "mirrorxy",
			 "rotate4z"};
  double Sf2_kx[5] = {0.3, 0, 0.3, 0, 0};
  double Sf2_ky[5] = {0.2, 0.2, 0, 0, 0};

#if 0
  master_printf("Running initial check...\n");
  if (!check_2d(funky_eps_2d, a, 1,
		Sf2[3], Sf2_kx[3], Sf2_ky[3],
		Ez, tm_c[3], gv_2d[1],
		1, gv_2d_rank[1], "initial check"))
    return 1;
#endif

  /* this test takes too long, so only do 1/chances of the cases,
     "randomly" selected */
  srand(314159); /* deterministic "rand" */
  chances = argc > 1 ? atoi(argv[1]) : 5;

  for (int iS = 0; iS < 5; ++iS)
    for (int splitting = 0; splitting < 5; ++splitting)
      for (int igv = 0; igv < 4; ++igv)
	for (int ic = 0; ic < 5; ++ic)
	  for (int use_real = 1; use_real >= 0; --use_real)
	    if (broadcast(0, rand()) % chances == 0) {
	      char name[1024];
	      snprintf(name, 1024, "check_2d_tm_%s_%d_%s_%s%s",
		       Sf2_name[iS], splitting, gv_2d_name[igv],
		       component_name(tm_c[ic]), use_real ? "_r" : "");
	      master_printf("Checking %s...\n", name);
	      if (!check_2d(funky_eps_2d, a, splitting,
			    Sf2[iS], Sf2_kx[iS], Sf2_ky[iS],
			    Ez, tm_c[ic], gv_2d[igv],
			    use_real, gv_2d_rank[igv], name))
		return 1;
	    }

  for (int iS = 0; iS < 5; ++iS)
    for (int splitting = 0; splitting < 5; ++splitting)
      for (int ic = 0; ic < 4; ++ic)
	for (int use_real = 1; use_real >= 0; --use_real)
	  if (broadcast(0, rand()) % chances == 0) {
	    char name[1024];
	    snprintf(name, 1024, "check_2d_monitor_tm_%s_%d_%s%s",
		     Sf2_name[iS], splitting,
		     component_name(tm_c[ic]), use_real ? "_r" : "");
	    master_printf("Checking %s...\n", name);
	    if (!check_2d_monitor(funky_eps_2d, a, splitting, Sf2[iS], Ez,
	    			  tm_c[ic], vec(pad1,pad2), use_real, name))
	      return 1;
	  }

  volume gv_3d[4] = {
       volume(vec(pad1,pad2,pad3), vec(xsize-pad2,ysize-pad1,zsize-pad3)),
       volume(vec(pad1,pad2,pad3), vec(xsize-pad2,ysize-pad1,pad3)),
       volume(vec(pad1,pad2,pad3), vec(xsize-pad2,pad2,pad3)),
       volume(vec(pad1,pad2,pad3), vec(pad1,pad2,pad3)),
  };
  char gv_3d_name[4][10] = {"volume", "plane", "line", "point"};
  int gv_3d_rank[4] = {3,2,1,0};
  int c3d[7] = {Ex,Dielectric,Dy,Ez, Sz,H_EnergyDensity,EnergyDensity};
  symfunc Sf3[3] = {make_identity, make_mirrorxy, make_rotate4z};
  char Sf3_name[3][32] = {"identity", "mirrorxy", "rotate4z"};

  for (int iS = 0; iS < 3; ++iS)
    for (int splitting = 0; splitting < 5; splitting += 3)
      for (int igv = 0; igv < 4; ++igv) {
	for (int ic = 0; ic < 1; ++ic)
	  if (broadcast(0, rand()) % chances == 0) {
	    bool use_real = true;
	    char name[1024];
	    snprintf(name, 1024, "check_3d_ezsrc_%s_%d_%s_%s%s", Sf3_name[iS],
		     splitting, gv_3d_name[igv], component_name(c3d[ic]),
		     use_real ? "_r" : "");
	    master_printf("Checking %s...\n", name);
	    if (!check_3d(funky_eps_3d, a, splitting, Sf3[iS], Ez, c3d[ic],
	    		  gv_3d[igv], use_real, gv_3d_rank[igv], name))
	      return 1;
	  }
      }
#endif /* HAVE_HDF5 */
  return 0;
}