File: integrate.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (401 lines) | stat: -rw-r--r-- 13,135 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/* Check of fields::integrate, by giving it random volumes in which to
   integrate purely linear functions of the coordinates--by
   construction, we should be able to integrate these exactly. */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#include <meep.hpp>
using namespace meep;
using namespace std;

double size[3] = {3.0,3.0,2.6};

static double one(const vec &p) {
  (void) p;
  return 1.0;
}

typedef struct {
  direction dx, dy, dz;
  double c, ax,ay,az, axy,ayz,axz, axyz;
  long double sum;
} linear_integrand_data;

/* integrand for integrating c + ax*x + ay*y + az*z. */
static complex<double> linear_integrand(const complex<double> *fields,
					const vec &loc,
					void *data_)
{
  linear_integrand_data *data = (linear_integrand_data *) data_;

  (void) fields; // unused

  // clean_vec is only necessary because we reference X/Y/Z for any gv.dim
  vec locS(clean_vec(loc));

  return (data->c
	  + data->ax * locS.in_direction(data->dx)
	  + data->ay * locS.in_direction(data->dy)
	  + data->az * locS.in_direction(data->dz)

	  + data->axy * locS.in_direction(data->dx)
	  * locS.in_direction(data->dy)

	  + data->ayz * locS.in_direction(data->dz)
	  * locS.in_direction(data->dy)

	  + data->axz * locS.in_direction(data->dx)
	  * locS.in_direction(data->dz)

	  + data->axyz * locS.in_direction(data->dx)
	  * locS.in_direction(data->dy)
	  * locS.in_direction(data->dz)
	  );
}

/* integrals of 1 and x, respectively, from a to b, or 1 and x if a==b: */
static double integral1(double a, double b, direction d)
{
  if (d == R)
    return a==b ? 2*pi*a : pi*(b*b-a*a);
  else
    return a==b ? 1 : b-a;
}

static double integralx(double a, double b, direction d) {
  if (d == R)
    return a==b ? 2*pi*a*a : 2*pi*(b*b*b-a*a*a)*.3333333333333333333333333;
  else
    return a==b ? a : (b*b-a*a)*.5;
}

static double correct_integral(const volume &v,
			       const linear_integrand_data &data)
{
  direction x = data.dx, y = data.dy, z = data.dz;
  double x1 = v.in_direction_min(x);
  double x2 = v.in_direction_max(x);
  double y1 = v.in_direction_min(y);
  double y2 = v.in_direction_max(y);
  double z1 = v.in_direction_min(z);
  double z2 = v.in_direction_max(z);

  return (data.c * integral1(x1,x2,x) * integral1(y1,y2,y) * integral1(z1,z2,z)
       + data.ax * integralx(x1,x2,x) * integral1(y1,y2,y) * integral1(z1,z2,z)
       + data.ay * integral1(x1,x2,x) * integralx(y1,y2,y) * integral1(z1,z2,z)
       + data.az * integral1(x1,x2,x) * integral1(y1,y2,y) * integralx(z1,z2,z)
      + data.axy * integralx(x1,x2,x) * integralx(y1,y2,y) * integral1(z1,z2,z)
      + data.ayz * integral1(x1,x2,x) * integralx(y1,y2,y) * integralx(z1,z2,z)
      + data.axz * integralx(x1,x2,x) * integral1(y1,y2,y) * integralx(z1,z2,z)
     + data.axyz * integralx(x1,x2,x) * integralx(y1,y2,y) * integralx(z1,z2,z)
	  );
}

// uniform pseudo-random number in [min,max]
static double urand(double min, double max)
{
  return (rand() * ((max - min) / RAND_MAX) + min);
}

static volume random_gv(ndim dim)
{
  volume v(dim);

  double s[3] = {0,0,0};
  int idim = dim == Dcyl ? 1 : int(dim);
  switch (rand() % (idim + 2)) { /* dimensionality */
  case 0:
    break;
  case 1: {
    int d = rand() % (idim + 1);
    s[d] = urand(0, size[d]);
    break;
  }
  case 2: {
    int d1 = rand() % (idim + 1);
    int d2 = (d1 + 1 + rand() % 2) % 3;
    s[d1] = urand(0, size[d1]);
    s[d2] = urand(0, size[d2]);
    break;
  }
  case 3:
    s[0] = urand(0, size[0]);
    s[1] = urand(0, size[1]);
    s[2] = urand(0, size[2]);
  }

  switch (dim) {
  case D1:
    v.set_direction_min(X, 0);
    v.set_direction_max(X, 0);
    v.set_direction_min(Y, 0);
    v.set_direction_max(Y, 0);
    v.set_direction_min(Z, urand(-100, 100));
    v.set_direction_max(Z, s[0] + v.in_direction_min(Z));
    break;
  case D2:
    v.set_direction_min(X, urand(-100, 100));
    v.set_direction_min(Y, urand(-100, 100));
    v.set_direction_max(X, s[0] + v.in_direction_min(X));
    v.set_direction_max(Y, s[1] + v.in_direction_min(Y));
    v.set_direction_min(Z, 0);
    v.set_direction_max(Z, 0);
    break;
  case Dcyl:
    v.set_direction_min(X, 0);
    v.set_direction_max(X, 0);
    v.set_direction_min(Y, 0);
    v.set_direction_max(Y, 0);
    v.set_direction_min(R, 0.1 + urand(0, size[0] - s[0]));
    v.set_direction_min(Z, urand(-100, 100));
    v.set_direction_max(R, s[0] + v.in_direction_min(R));
    v.set_direction_max(Z, s[1] + v.in_direction_min(Z));
    v.set_direction_min(P, 0);
    v.set_direction_max(P, 0);
    break;
  case D3:
    v.set_direction_min(X, urand(-100, 100));
    v.set_direction_min(Y, urand(-100, 100));
    v.set_direction_max(X, s[0] + v.in_direction_min(X));
    v.set_direction_max(Y, s[1] + v.in_direction_min(Y));
    v.set_direction_min(Z, urand(-100, 100));
    v.set_direction_max(Z, s[2] + v.in_direction_min(Z));
    break;
  default:
    abort("unsupported dimensionality in integrate.cpp");
  }

  return v;
}

void check_integral(fields &f,
		    linear_integrand_data &d, const volume &v,
		    component cgrid)
{
  double x1 = v.in_direction_min(d.dx);
  double x2 = v.in_direction_max(d.dx);
  double y1 = v.in_direction_min(d.dy);
  double y2 = v.in_direction_max(d.dy);
  double z1 = v.in_direction_min(d.dz);
  double z2 = v.in_direction_max(d.dz);

  master_printf("Check %d-dim. %s integral in %s cell with %s integrand...",
		(x2 - x1 > 0) + (y2 - y1 > 0) + (z2 - z1 > 0),
		component_name(cgrid),
		v.dim == D3 ? "3d" : (v.dim == D2 ? "2d" :
				       (v.dim == Dcyl ? "cylindrical"
					: "1d")),
		(d.c == 1.0 && !d.axy && !d.ax && !d.ay && !d.az
		 && !d.axy && !d.ayz && !d.axz) ? "unit" : "linear");
  if (0)
    master_printf("\n... grid_volume (%g,%g,%g) at (%g,%g,%g) with integral (%g, %g,%g,%g, %g,%g,%g, %g)...\n",
		  x2 - x1, y2 - y1, z2 - z1,
		  (x1+x2)/2, (y1+y2)/2, (z1+z2)/2,
		  d.c, d.ax,d.ay,d.az, d.axy,d.ayz,d.axz, d.axyz);

  double sum = real(f.integrate(0, 0, linear_integrand, (void *) &d, v));
  if (fabs(sum - correct_integral(v, d)) > 1e-9 * fabs(sum))
    abort("FAILED: %0.16g instead of %0.16g\n",
	  (double) sum, correct_integral(v, d));
  master_printf("...PASSED.\n");
}

void check_splitsym(const grid_volume &gv, int splitting,
		    const symmetry &S, const char *Sname)
{
  const int num_random_trials = 100;
  structure s(gv, one, no_pml(), S, splitting);
  fields f(&s);

  // periodic boundaries:
  f.use_bloch(zero_vec(gv.dim));

  linear_integrand_data d;
  if (gv.dim == Dcyl) {
    d.dx = R; d.dy = P; d.dz = Z;
  }
  else {
    d.dx = X; d.dy = Y; d.dz = Z;
  }

  master_printf("\nCHECKS for splitting=%d, symmetry=%s\n...",
		splitting, Sname);
  for (int i = 0; i < num_random_trials; ++i) {
    volume v(random_gv(gv.dim));
    component cgrid;

    do {
      cgrid = component(rand() % (Dielectric + 1));
    } while (coordinate_mismatch(gv.dim, component_direction(cgrid)));

    // try integral of 1 first (easier to debug, I hope)
    d.c = 1.0;
    d.ax = d.ay = d.az = d.axy = d.ayz = d.axz = d.axyz = 0.0;
    check_integral(f, d, v, cgrid);

    d.c = urand(-1,1);
    d.ax = urand(-1,1); d.ay = urand(-1,1); d.az = urand(-1,1);
    d.axy = urand(-1,1); d.ayz = urand(-1,1); d.axz = urand(-1,1);
    d.axyz = urand(-1,1);
    if (gv.dim == Dcyl) // cyl. doesn't integrate linear functions of r exactly
      d.ax = d.axy = d.axz = d.axyz = 0;
    check_integral(f, d, v, cgrid);
  }
}

// check LOOP_OVER_VOL and LOOP_OVER_VOL_OWNED macros
void check_loop_vol(const grid_volume &gv, component c)
{
  size_t count = 0, count_owned = 0;
  ptrdiff_t min_i = ptrdiff_t(gv.ntot()), max_i = 0;

  master_printf("Checking %s loops for %s grid_volume...\n",
		component_name(c), dimension_name(gv.dim));

  ivec vmin(gv.little_corner() + gv.iyee_shift(c));
  ivec vmax(gv.big_corner() + gv.iyee_shift(c));

  LOOP_OVER_VOL(gv, c, i) {
    IVEC_LOOP_ILOC(gv, ihere);
    IVEC_LOOP_LOC(gv, here);
    ivec ihere0(gv.iloc(c, i));
    vec here0(gv[ihere0]);
    if (ihere0 != ihere)
      abort("FAILED: wrong LOOP_OVER_VOL iloc at i=%td\n", i);
    if (abs(here0 - here) > 1e-13)
      abort("FAILED: wrong LOOP_OVER_VOL loc (err = %g) at i=%td\n",
	    abs(here0 - here), i);
    ++count;
    if (i < min_i) min_i = i;
    if (i > max_i) max_i = i;
    if (gv.owns(ihere))
      ++count_owned;
    if (ihere < vmin || ihere > vmax)
      abort("FAILED: LOOP_OVER_VOL outside V at i=%td\n", i);
  }
  if (count != gv.ntot())
    abort("FAILED: LOOP_OVER_VOL has %zd iterations instead of ntot=%zd\n",
	  count, gv.ntot());
  if (count_owned != gv.nowned(c))
    abort("FAILED: LOOP_OVER_VOL has %zd owned points instead of nowned=%zd\n",
	  count_owned, gv.nowned(c));
  if (min_i != 0)
    abort("FAILED: LOOP_OVER_VOL has minimum index %td instead of 0\n", min_i);
  if (size_t(max_i) != gv.ntot() - 1)
    abort("FAILED: LOOP_OVER_VOL has max index %td instead of ntot-1\n", max_i);

  count = 0;
  LOOP_OVER_VOL_OWNED(gv, c, i) {
    IVEC_LOOP_ILOC(gv, ihere);
    IVEC_LOOP_LOC(gv, here);
    ivec ihere0(gv.iloc(c, i));
    vec here0(gv[ihere0]);
    if (ihere0 != ihere)
      abort("FAILED: wrong LOOP_OVER_VOL_OWNED iloc at i=%td\n", i);
    if (abs(here0 - here) > 1e-13)
      abort("FAILED: wrong LOOP_OVER_VOL_OWNED loc (err = %g) at i=%td\n",
	    abs(here0 - here), i);
    if (!gv.owns(ihere))
      abort("FAILED: LOOP_OVER_VOL_OWNED includes non-owned at i=%td\n", i);
    ++count;
  }
  if (count != count_owned)
    abort("FAILED: LOOP_OVER_VOL_OWNED has %zd iterations instead of %zd\n",
	  count, count_owned);

  count = 0;
  LOOP_OVER_VOL_NOTOWNED(gv, c, i) {
    IVEC_LOOP_ILOC(gv, ihere);
    IVEC_LOOP_LOC(gv, here);
    ivec ihere0(gv.iloc(c, i));
    vec here0(gv[ihere0]);
    if (ihere0 != ihere)
      abort("FAILED: wrong LOOP_OVER_VOL_NOTOWNED iloc at i=%td\n", i);
    if (abs(here0 - here) > 1e-13)
      abort("FAILED: wrong LOOP_OVER_VOL_NOTOWNED loc (err = %g) at i=%td\n",
	    abs(here0 - here), i);
    if (gv.owns(ihere))
      abort("FAILED: LOOP_OVER_VOL_NOTOWNED includes owned at i=%td\n", i);
    if (ihere < vmin || ihere > vmax)
      abort("FAILED: LOOP_OVER_VOL_NOTOWNED outside V at i=%td\n", i);
    ++count;
  }
  if (count != gv.ntot() - count_owned)
    abort("FAILED: LOOP_OVER_VOL_NOTOWNED has %zd iterations instead of %zd\n",
	  count, gv.ntot() - count_owned);

  master_printf("...PASSED.\n");
}

int main(int argc, char **argv)
{
  const double a = 10.0;
  initialize mpi(argc, argv);
  quiet = true;
  const grid_volume v3d = vol3d(size[0], size[1], size[2], a);
  const grid_volume v3d0 = vol3d(size[0], size[1], 0, a);
  const grid_volume v3d00 = vol3d(size[0], 0, 0, a);
  const grid_volume v2d = vol2d(size[0], size[1], a);
  const grid_volume v1d = vol1d(size[0], a);
  const grid_volume vcyl = volcyl(size[0], size[1], a);

  for (int ic = Ex; ic <= Dielectric; ++ic) {
    component c = component(ic);
    check_loop_vol(v1d, c);
    check_loop_vol(v2d, c);
    check_loop_vol(v3d, c);
    check_loop_vol(vcyl, c);
    check_loop_vol(v3d0, c);
    check_loop_vol(v3d00, c);
  }

  srand(0); // use fixed random sequence

  for (int splitting = 0; splitting < 5; ++splitting) {
    check_splitsym(v3d, splitting, identity(), "identity");
    check_splitsym(v3d, splitting, mirror(X,v3d), "mirrorx");
    check_splitsym(v3d, splitting, mirror(Y,v3d), "mirrory");
    check_splitsym(v3d, splitting, mirror(X,v3d) + mirror(Y,v3d), "mirrorxy");
    check_splitsym(v3d, splitting, rotate4(Z,v3d), "rotate4");
  }

  for (int splitting = 0; splitting < 5; ++splitting) {
    check_splitsym(v2d, splitting, identity(), "identity");
    check_splitsym(v2d, splitting, mirror(X,v2d), "mirrorx");
    check_splitsym(v2d, splitting, mirror(Y,v2d), "mirrory");
    check_splitsym(v2d, splitting, mirror(X,v2d) + mirror(Y,v2d), "mirrorxy");
    check_splitsym(v2d, splitting, rotate4(Z,v2d), "rotate4");
  }

  const grid_volume vcyl_pad = volcyl(size[0] + 0.2, size[1], a);
  for (int splitting = 0; splitting < 5; ++splitting) {
    check_splitsym(vcyl_pad, splitting, identity(), "identity");
    check_splitsym(vcyl_pad, splitting, mirror(Z,vcyl), "mirrorz");
  }

  for (int splitting = 0; splitting < 5; ++splitting) {
    check_splitsym(v1d, splitting, identity(), "identity");
    check_splitsym(v1d, splitting, mirror(Z,v1d), "mirrorz");
  }

  return 0;
}