File: known_results.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (183 lines) | stat: -rw-r--r-- 6,128 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology  
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include <stdio.h>
#include <stdlib.h>

#include <meep.hpp>
using namespace meep;
using namespace std;

#include "config.h"

double one(const vec &) { return 1.0; }

double rods(const vec &r) {
  vec p = r;
  while (p.x() < -0.5) p.set_direction(X, p.x() + 1.0);
  while (p.x() >  0.5) p.set_direction(X, p.x() - 1.0);
  while (p.y() < -0.5) p.set_direction(Y, p.y() + 1.0);
  while (p.y() >  0.5) p.set_direction(Y, p.y() - 1.0);
  if (p.x()*p.x() + p.y()*p.y() < 0.3) return 12.0;
  return 1.0;
}

void compare(double b, double a, const char *n) {
  double thresh = sizeof(realnum) == sizeof(float) ? 1e-4 : 1e-5;
  if (fabs(a-b) > fabs(b)*thresh || b != b) {
    abort("Failed %s (%g instead of %g, relerr %0.2g)\n", n,
	  a, b, fabs(a-b)/fabs(b));
  } else {
    master_printf("Passed %s\n", n);
  }
}

static double dpml = 1.0;

double using_pml_ez(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 30.0;
  structure s(gv, eps, pml(dpml));
  fields f(&s);
  f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ez));
}

double x_periodic_y_pml(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 30.0;
  structure s(gv, eps, pml(dpml, Y));
  fields f(&s);
  f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  f.use_bloch(X, 0.1);
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ez));
}

double x_periodic(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 30.0;
  structure s(gv, eps);
  fields f(&s);
  f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  f.use_bloch(X, 0.1);
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ez));
}

double periodic_ez(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 30.0;
  structure s(gv, eps);
  fields f(&s);
  f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  vec k;
  switch (gv.dim) {
  case D1: k = vec(0.3); break;
  case D2: k = vec(0.3,0.4); break;
  case D3: k = vec(0.3,0.5,0.8); break;
  case Dcyl: k = veccyl(0.3,0.2); break;
  }
  f.use_bloch(k);
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ez));
}

double metallic_ez(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 10.0;
  structure s(gv, eps);
  fields f(&s);
  f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ez));
}

double sigma(const vec &) { return 7.63; }

double polariton_ex(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 10.0;
  structure s(gv, eps);
  s.add_susceptibility(sigma, E_stuff, lorentzian_susceptibility(0.3, 0.1));
  fields f(&s);
  f.add_point_source(Ex, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  while (f.round_time() < ttot) f.step();
  monitor_point p;
  f.get_point(&p, gv.center());
  return real(p.get_component(Ex));
}

double polariton_energy(const grid_volume &gv, double eps(const vec &)) {
  const double ttot = 10.0;
  structure s(gv, eps);
  s.add_susceptibility(sigma, E_stuff, lorentzian_susceptibility(0.3, 0.1));
  fields f(&s, 0);
  f.add_point_source(Ex, 0.2, 3.0, 0.0, 2.0, gv.center(),
		     complex<double>(0,-2*pi*0.2));
  while (f.round_time() < ttot) f.step();
  return f.field_energy();
}

int main(int argc, char **argv) {
  initialize mpi(argc, argv);
  quiet = true;
  const char *mydirname = "known_results-out";
  trash_output_directory(mydirname);
  master_printf("Testing with some known results...\n");
  const double a = 10.0;

  compare(-0.0894851, polariton_ex(volone(1.0, a), one),
          "1D polariton");
  compare(0.0863443, polariton_energy(volone(1.0, a), one),
          "1D polariton energy");
  compare(5.20605, metallic_ez(voltwo(1.0, 1.0, a), one),
          "1x1 metallic 2D TM");
  compare(0.883776, using_pml_ez(voltwo(1.0+2*dpml, 1.0+2*dpml, a), one),
          "1x1 PML 2D TM");
  compare(0.110425, x_periodic(voltwo(1.0, 1.0, a), one),
          "1x1 X periodic 2D TM");
  compare(-4.78767, periodic_ez(voltwo(1.0, 3.0, a), rods),
          "1x1 fully periodic 2D TM rods");
  compare(1.12502, periodic_ez(voltwo(1.0, 3.0, a), one),
          "1x1 fully periodic 2D TM");
  compare(0.608815, x_periodic_y_pml(voltwo(1.0, 1.0+2*dpml, a), one),
          "1x1 X periodic Y PML 2D TM");
  compare(-41.8057, metallic_ez(vol3d(1.0, 1.0, 1.0, a), one),
          "1x1x1 metallic 3D");
  compare(-100.758, x_periodic(vol3d(1.0, 1.0, 1.0, a), one),
          "1x1x1 X periodic 3D");
  compare(-101.398, x_periodic_y_pml(vol3d(1.0, 1.0+2*dpml, 1.0, a), one),
          "1x1x1 X periodic Y PML 3D");
  compare(-103.844, periodic_ez(vol3d(1.0, 1.0, 1.0, a), rods),
	  "1x1x1 fully periodic 3D rods");
  compare(-99.1618, periodic_ez(vol3d(1.0, 1.0, 1.0, a), one),
          "1x1x1 fully periodic 3D");

  return 0;
}