File: one_dimensional.cpp

package info (click to toggle)
meep-mpich2 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 25,824 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 440; sh: 28
file content (167 lines) | stat: -rw-r--r-- 5,827 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology  
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

#include <meep.hpp>
using namespace meep;
using namespace std;

double one(const vec &) { return 1.0; }

#if MEEP_SINGLE
static const double tol = 1e-3, thresh = 1e-10;
#else
static const double tol = 1e-11, thresh = 1e-12;
#endif

int compare(double a, double b, const char *n) {
  if (fabs(a-b) > fabs(b)*tol && fabs(b) > thresh) {
    master_printf("%s differs by\t%g out of\t%g\n", n, a-b, b);
    master_printf("This gives a fractional error of %g\n", fabs(a-b)/fabs(b));
    return 0;
  } else {
    return 1;
  }
}

int compare_point(fields &f1, fields &f2, const vec &p) {
  monitor_point m1, m_test;
  f1.get_point(&m_test, p);
  f2.get_point(&m1, p);
  for (int i=0;i<10;i++) {
    component c = (component) i;
    if (f1.gv.has_field(c)) {
      complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c);
      if (abs(v1 - v2) > tol*abs(v2) && abs(v2) > thresh) {
        master_printf("%s differs:  %g %g out of %g %g\n",
               component_name(c), real(v2-v1), imag(v2-v1), real(v2), imag(v2));
        master_printf("This comes out to a fractional error of %g\n",
               abs(v1 - v2)/abs(v2));
        master_printf("Right now I'm looking at %g, time %g\n", p.z(), f1.time());
        return 0;
      }
    }
  }
  return 1;
}

int test_simple_periodic(double eps(const vec &), int splitting, const char *mydirname) {
  double a = 10.0;
  double ttot = 170.0;
  
  grid_volume gv = volone(6.0,a);
  structure s1(gv, eps);
  structure s(gv, eps, no_pml(), identity(), splitting);
  s.set_output_directory(mydirname);
  s1.set_output_directory(mydirname);

  master_printf("Trying splitting into %d chunks...\n", splitting);
  fields f(&s);
  f.use_bloch(0.0);
  f.add_point_source(Hy, 0.7, 2.5, 0.0, 4.0, vec(0.5), 1.0);
  f.add_point_source(Ex, 0.8, 0.6, 0.0, 4.0, vec(0.401), 1.0);
  fields f1(&s1);
  f1.use_bloch(0.0);
  f1.add_point_source(Hy, 0.7, 2.5, 0.0, 4.0, vec(0.5), 1.0);
  f1.add_point_source(Ex, 0.8, 0.6, 0.0, 4.0, vec(0.401), 1.0);
  if (!compare(f1.count_volume(Ex), f.count_volume(Ex), "grid_volume")) return 0;
  double field_energy_check_time = 29.0;
  while (f.time() < ttot) {
    f.step();
    f1.step();
    if (!compare_point(f, f1, vec(0.5  ))) return 0;
    if (!compare_point(f, f1, vec(0.46 ))) return 0;
    if (!compare_point(f, f1, vec(1.0  ))) return 0;
    if (!compare_point(f, f1, vec(0.01 ))) return 0;
    if (!compare_point(f, f1, vec(0.601))) return 0;
    if (f.time() >= field_energy_check_time) {
      if (!compare(f.field_energy(), f1.field_energy(),
                   "   total energy")) return 0;
      if (!compare(f.electric_energy_in_box(gv.surroundings()),
                   f1.electric_energy_in_box(gv.surroundings()),
                   "electric energy")) return 0;
      if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
                   f1.magnetic_energy_in_box(gv.surroundings()),
                   "magnetic energy")) return 0;
      
      field_energy_check_time += 5.0;
    }
  }
  return 1;
}

complex<double> checkers(const vec &pt) {
  const double thez = pt.z()+0.00001;
  int z = (int) (thez*5.0);
  int zz = (int) (thez*10.0);
  if (z & 1) return cos(thez);
  if (zz & 1) return 2.0;
  return 1.0;
}

int test_pattern(double eps(const vec &), int splitting,
                 const char *mydirname) {
  double a = 10.0;
  grid_volume gv = volone(6.0,a);
  structure s1(gv, eps);
  structure s(gv, eps, no_pml(), identity(), splitting);
  s.set_output_directory(mydirname);
  s1.set_output_directory(mydirname);

  master_printf("Trying test pattern with %d chunks...\n", splitting);
  fields f(&s);
  f.use_bloch(0.0);
  fields f1(&s1);
  f1.use_bloch(0.0);
  if (!compare(f1.count_volume(Ex), f.count_volume(Ex), "grid_volume")) return 0;
  f1.initialize_field(Hy, checkers);
  f.initialize_field(Hy, checkers);

  f.step();
  f1.step();
  if (!compare_point(f, f1, vec(27.99))) return 0;
  if (!compare_point(f, f1, vec(42.01))) return 0;
  if (!compare_point(f, f1, vec(0.751))) return 0;
  if (!compare_point(f, f1, vec(0.01 ))) return 0;
  if (!compare_point(f, f1, vec(1.0  ))) return 0;
  if (!compare(f.field_energy(), f1.field_energy(),
               "   total energy")) return 0;
  if (!compare(f.electric_energy_in_box(gv.surroundings()),
               f1.electric_energy_in_box(gv.surroundings()),
               "electric energy")) return 0;
  if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
               f1.magnetic_energy_in_box(gv.surroundings()),
               "magnetic energy")) return 0;
  return 1;
}

int main(int argc, char **argv) {
  initialize mpi(argc, argv);
  quiet = true;
  const char *mydirname = "one_dimensional-out";
  master_printf("Testing one dimension under different splittings...\n");

  for (int s=2;s<7;s++)
    if (!test_pattern(one, s, mydirname)) abort("error in test_pattern\n");

  for (int s=2;s<7;s++)
    if (!test_simple_periodic(one, s, mydirname)) abort("error in test_simple_periodic\n");
  return 0;
}