1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
import meep as mp
import math
def refl_planar(theta, kz_2d):
resolution = 100
dpml = 1.0
sx = 10
sx = 10 + 2*dpml
cell_size = mp.Vector3(sx)
pml_layers = [mp.PML(dpml)]
fcen = 1.0
# plane of incidence is XZ
k = mp.Vector3(z=math.sin(theta)).scale(fcen)
sources = [mp.Source(mp.GaussianSource(fcen,fwidth=0.2*fcen),
component=mp.Ey,
center=mp.Vector3(-0.5*sx+dpml))]
sim = mp.Simulation(cell_size=cell_size,
boundary_layers=pml_layers,
sources=sources,
k_point=k,
kz_2d=kz_2d,
resolution=resolution)
refl_fr = mp.FluxRegion(center=mp.Vector3(-0.25*sx))
refl = sim.add_flux(fcen, 0, 1, refl_fr)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ey, mp.Vector3(-0.5*sx+dpml), 1e-9))
input_flux = mp.get_fluxes(refl)
input_data = sim.get_flux_data(refl)
sim.reset_meep()
# add a block with n=3.5 for the air-dielectric interface
geometry = [mp.Block(size=mp.Vector3(0.5*sx,mp.inf,mp.inf),
center=mp.Vector3(0.25*sx),
material=mp.Medium(index=3.5))]
sim = mp.Simulation(cell_size=cell_size,
geometry=geometry,
boundary_layers=pml_layers,
sources=sources,
k_point=k,
kz_2d=kz_2d,
resolution=resolution)
refl = sim.add_flux(fcen, 0, 1, refl_fr)
sim.load_minus_flux_data(refl, input_data)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ey, mp.Vector3(-0.5*sx+dpml), 1e-9))
refl_flux = mp.get_fluxes(refl)
freqs = mp.get_flux_freqs(refl)
Rmeep = -refl_flux[0]/input_flux[0]
return Rmeep
# rotation angle of source: CCW around Y axis, 0 degrees along +X axis
theta_r = math.radians(19.4)
Rmeep_real_imag = refl_planar(theta_r,"real/imag")
Rmeep_complex = refl_planar(theta_r,"complex")
Rmeep_3d = refl_planar(theta_r,"3d")
n1=1
n2=3.5
# compute angle of refracted planewave in medium n2
# for incident planewave in medium n1 at angle theta_in
theta_out = lambda theta_in: math.asin(n1*math.sin(theta_in)/n2)
# compute Fresnel reflectance for S-polarization in medium n2
# for incident planewave in medium n1 at angle theta_in
Rfresnel = lambda theta_in: math.fabs((n2*math.cos(theta_out(theta_in))-n1*math.cos(theta_in))/(n2*math.cos(theta_out(theta_in))+n1*math.cos(theta_in)))**2
print("refl:, {} (real/imag), {} (complex), {} (3d), {} (analytic)".format(Rmeep_real_imag,Rmeep_complex,Rmeep_3d,Rfresnel(theta_r)))
|