File: Python_User_Interface.md

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (8635 lines) | stat: -rw-r--r-- 287,739 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
---
# Python User Interface
---

This page is a listing of the functions exposed by the Python interface. For a gentler introduction, see [Tutorial/Basics](Python_Tutorials/Basics.md). Note that this page is not a complete listing of all functions. In particular, because of the [SWIG wrappers](#swig-wrappers), every function in the C++ interface is accessible from the Python module, but not all of these functions are documented or intended for end users. See also the instructions for [Parallel Meep](Parallel_Meep.md).

The Python API functions and classes can be found in the `meep` module, which should be installed in your Python system by Meep's `make install` script. If you installed into a nonstandard location (e.g. your home directory), you may need to set the `PYTHONPATH` environment variable as documented in [Building From Source](Build_From_Source.md#building-from-source). You typically import the `meep` module in Python via `import meep as mp`.

[TOC]


Predefined Variables
--------------------

These are available directly via the `meep` package.

**`air`, `vacuum` [`Medium` class ]**
—
Two aliases for a predefined material type with a dielectric constant of 1.

**`perfect_electric_conductor` or `metal` [`Medium` class ]**
—
A predefined material type corresponding to a perfect electric conductor at the boundary of which the parallel electric field is zero. Technically, $\varepsilon = -\infty$.

**`perfect_magnetic_conductor` [`Medium` class ]**
—
A predefined material type corresponding to a perfect magnetic conductor at the boundary of which the parallel magnetic field is zero. Technically, $\mu = -\infty$.

**`inf` [`number`]**
—
A big number (10<sup>20</sup>) to use for "infinite" dimensions of objects.

Constants (Enumerated Types)
----------------------------

Several of the functions/classes in Meep ask you to specify e.g. a field component or a direction in the grid. These should be one of the following constants (which are available directly via the `meep` package):

**`direction` constants**
—
Specify a direction in the grid. One of `X`, `Y`, `Z`, `R`, `P` for $x$, $y$, $z$, $r$, $\phi$, respectively.

**`side` constants**
—
Specify particular boundary in the positive `High` (e.g., +`X`) or negative `Low` (e.g., -`X`) direction.

**`boundary_condition` constants**
—
`Metallic` (i.e., zero electric field) or `Magnetic` (i.e., zero magnetic field).

**`component` constants**
—
Specify a particular field or other component. One of `Ex`, `Ey`, `Ez`, `Er`, `Ep`, `Hx`, `Hy`, `Hz`, `Hy`, `Hp`, `Hz`, `Bx`, `By`, `Bz`, `By`, `Bp`, `Bz`, `Dx`, `Dy`, `Dz`, `Dr`, `Dp`, `Dielectric`, `Permeability`, for $E_x$, $E_y$, $E_z$, $E_r$, $E_\phi$, $H_x$, $H_y$, $H_z$, $H_r$, $H_\phi$, $B_x$, $B_y$, $B_z$, $B_r$, $B_\phi$, $D_x$, $D_y$, $D_z$, $D_r$, $D_\phi$, ε, μ, respectively.

**`derived_component` constants**
—
These are additional components which are not actually stored by Meep but are computed as needed, mainly for use in output functions. One of `Sx`, `Sy`, `Sz`, `Sr`, `Sp`, `EnergyDensity`, `D_EnergyDensity`, `H_EnergyDensity` for $S_x$, $S_y$, $S_z$, $S_r$, $S_\phi$ (components of the Poynting vector $\mathrm{Re}\,\mathbf{E}^* \times \mathbf{H}$), $(\mathbf{E}^* \cdot \mathbf{D} + \mathbf{H}^* \cdot \mathbf{B})/2$, $\mathbf{E}^* \cdot \mathbf{D}/2$, $\mathbf{H}^* \cdot \mathbf{B}/2$, respectively.



The Simulation Class
---------------------

The `Simulation` class is the primary abstraction of the high-level interface. Minimally, a simulation script amounts to passing the desired keyword arguments to the `Simulation` constructor and calling the `run` method on the resulting instance.


---
<a id="Simulation"></a>

### Simulation

```python
class Simulation(object):
```

<div class="class_docstring" markdown="1">

The `Simulation` [class](#classes) contains all the attributes that you can set to
control various parameters of the Meep computation.

</div>


<a id="Simulation.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             cell_size: Union[meep.geom.Vector3, Tuple[float, ...], NoneType] = None,
             resolution: float = None,
             geometry: Optional[List[meep.geom.GeometricObject]] = None,
             sources: Optional[List[meep.source.Source]] = None,
             eps_averaging: bool = True,
             dimensions: int = 3,
             boundary_layers: Optional[List[meep.simulation.PML]] = None,
             symmetries: Optional[List[meep.simulation.Symmetry]] = None,
             force_complex_fields: bool = False,
             default_material: meep.geom.Medium = Medium(),
             m: float = 0,
             k_point: Union[meep.geom.Vector3, Tuple[float, ...], bool] = False,
             kz_2d: str = 'complex',
             extra_materials: Optional[List[meep.geom.Medium]] = None,
             material_function: Optional[Callable[[Union[meep.geom.Vector3, Tuple[float, ...]]], meep.geom.Medium]] = None,
             epsilon_func: Optional[Callable[[Union[meep.geom.Vector3, Tuple[float, ...]]], float]] = None,
             epsilon_input_file: str = '',
             progress_interval: float = 4,
             subpixel_tol: float = 0.0001,
             subpixel_maxeval: int = 100000,
             loop_tile_base_db: int = 0,
             loop_tile_base_eh: int = 0,
             ensure_periodicity: bool = True,
             num_chunks: int = 0,
             Courant: float = 0.5,
             accurate_fields_near_cylorigin: bool = False,
             filename_prefix: Optional[str] = None,
             output_volume: Optional[meep.simulation.Volume] = None,
             output_single_precision: bool = False,
             geometry_center: Union[meep.geom.Vector3, Tuple[float, ...]] = Vector3<0.0, 0.0, 0.0>,
             force_all_components: bool = False,
             split_chunks_evenly: bool = True,
             chunk_layout=None,
             collect_stats: bool = False):
```

<div class="method_docstring" markdown="1">

All `Simulation` attributes are described in further detail below. In brackets
after each variable is the type of value that it should hold. The classes, complex
datatypes like `GeometricObject`, are described in a later subsection. The basic
datatypes, like `integer`, `boolean`, `complex`, and `string` are defined by
Python. `Vector3` is a `meep` class.

+ **`geometry` [ list of `GeometricObject` class ]** — Specifies the geometric
  objects making up the structure being simulated. When objects overlap, later
  objects in the list take precedence. Defaults to no objects (empty list).

+ **`geometry_center` [ `Vector3` class ]** — Specifies the coordinates of the
  center of the cell. Defaults to (0, 0, 0), but changing this allows you to shift
  the coordinate system used in Meep (for example, to put the origin at the
  corner).  Passing `geometry_center=c` is equivalent to adding the `c` vector to
  the coordinates of every other object in the simulation, i.e. `c` becomes the
  new origin that other objects are defined with respect to.

+ **`sources` [ list of `Source` class ]** — Specifies the current sources to be
  present in the simulation. Defaults to none (empty list).

+ **`symmetries` [ list of `Symmetry` class ]** — Specifies the spatial symmetries
  (mirror or rotation) to exploit in the simulation. Defaults to none (empty
  list). The symmetries must be obeyed by *both* the structure and the sources.
  See also [Exploiting Symmetry](Exploiting_Symmetry.md).

+ **`boundary_layers` [ list of `PML` class ]** — Specifies the
  [PML](Perfectly_Matched_Layer.md) absorbing boundary layers to use. Defaults to
  none (empty list).

+ **`cell_size` [ `Vector3` ]** — Specifies the size of the cell which is centered
  on the origin of the coordinate system. Any sizes of 0 imply a
  reduced-dimensionality calculation. Strictly speaking, the dielectric function
  is taken to be uniform along that dimension. A 2d calculation is especially
  optimized. See `dimensions` below. **Note:** because Maxwell's equations are
  scale invariant, you can use any units of distance you want to specify the cell
  size: nanometers, microns, centimeters, etc. However, it is usually convenient
  to pick some characteristic lengthscale of your problem and set that length to 1.
  See also [Units](Introduction.md#units-in-meep). Required argument (no default).

+ **`default_material` [`Medium` class ]** — Holds the default material that is
  used for points not in any object of the geometry list. Defaults to `air` (ε=1).
  This can also be a NumPy array that defines a dielectric function much like
  `epsilon_input_file` below (see below). If you want to use a material function
  as the default material, use the `material_function` keyword argument (below).

+ **`material_function` [ function ]** — A Python function that takes a `Vector3`
  and returns a `Medium`. See also [Material Function](#medium).
  Defaults to `None`.

+ **`epsilon_func` [ function ]** — A Python function that takes a `Vector3` and
  returns the dielectric constant at that point. See also [Material
  Function](#medium). Defaults to `None`.

+ **`epsilon_input_file` [`string`]** — If this string is not empty (the default),
  then it should be the name of an HDF5 file whose first/only dataset defines a
  scalar, real-valued, frequency-independent dielectric function over some
  discrete grid. Alternatively, the dataset name can be specified explicitly if
  the string is in the form "filename:dataset". This dielectric function is then
  used in place of the ε property of `default_material` (i.e. where there are no
  `geometry` objects). The grid of the epsilon file dataset need *not* match the
  computational grid; it is scaled and/or linearly interpolated as needed to map
  the file onto the cell. The structure is warped if the proportions of the grids
  do not match. **Note:** the file contents only override the ε property of the
  `default_material`, whereas other properties (μ, susceptibilities,
  nonlinearities, etc.) of `default_material` are still used.

+ **`dimensions` [`integer`]** — Explicitly specifies the dimensionality of the
  simulation, if the value is less than 3. If the value is 3 (the default), then
  the dimensions are automatically reduced to 2 if possible when `cell_size` in
  the $z$ direction is `0`. If `dimensions` is the special value of `CYLINDRICAL`,
  then cylindrical coordinates are used and the $x$ and $z$ dimensions are
  interpreted as $r$ and $z$, respectively. If `dimensions` is 1, then the cell
  must be along the $z$ direction and only $E_x$ and $H_y$ field components are
  permitted. If `dimensions` is 2, then the cell must be in the $xy$ plane.

+ **`m` [`number`]** — For `CYLINDRICAL` simulations, specifies that the angular
  $\phi$ dependence of the fields is of the form $e^{im\phi}$ (default is `m=0`).
  If the simulation cell includes the origin $r=0$, then `m` must be an integer.

+ **`accurate_fields_near_cylorigin` [`boolean`]** — For `CYLINDRICAL` simulations
  with |*m*| &gt; 1, compute more accurate fields near the origin $r=0$ at the
  expense of requiring a smaller Courant factor. Empirically, when this option is
  set to `True`, a Courant factor of roughly $\min[0.5, 1 / (|m| + 0.5)]$ or
  smaller seems to be needed. Default is `False`, in which case the $D_r$, $D_z$,
  and $B_r$ fields within |*m*| pixels of the origin are forced to zero, which
  usually ensures stability with the default Courant factor of 0.5, at the expense
  of slowing convergence of the fields near $r=0$.

+ **`resolution` [`number`]** — Specifies the computational grid resolution in
  pixels per distance unit. Required argument. No default.

+ **`k_point` [`False` or `Vector3`]** — If `False` (the default), then the
  boundaries are perfect metallic (zero electric field). If a `Vector3`, then the
  boundaries are Bloch-periodic: the fields at one side are
  $\exp(i\mathbf{k}\cdot\mathbf{R})$ times the fields at the other side, separated
  by the lattice vector $\mathbf{R}$. A non-zero `Vector3` will produce complex
  fields. The `k_point` vector is specified in Cartesian coordinates in units of
  2Ï€/distance. Note: this is *different* from [MPB](https://mpb.readthedocs.io),
  equivalent to taking MPB's `k_points` through its function
  `reciprocal->cartesian`.

+ **`kz_2d` [`"complex"`, `"real/imag"`, or `"3d"`]** — A 2d cell (i.e.,
  `dimensions=2`) combined with a `k_point` that has a *non-zero* component in $z$
  would normally result in a 3d simulation with complex fields. However, by
  default (`kz_2d="complex"`), Meep will use a 2d computational cell in which
  $k_z$ is incorporated as an additional term in Maxwell's equations, which still
  results in complex fields but greatly improved performance. Setting `kz_2d="3d"`
  will instead use a 3d cell that is one pixel thick (with Bloch-periodic boundary
  conditions), which is considerably more expensive. The third possibility,
  `kz_2d="real/imag"`, saves an additional factor of two by storing some field
  components as purely real and some as purely imaginary in a "real" field, but
  this option requires some care to use. See [2d Cell with Out-of-Plane
  Wavevector](2d_Cell_Special_kz.md).

+ **`ensure_periodicity` [`boolean`]** — If `True` (the default) *and* if the
  boundary conditions are periodic (`k_point` is not `False`), then the geometric
  objects are automatically repeated periodically according to the lattice vectors
  which define the size of the cell.

+ **`eps_averaging` [`boolean`]** — If `True` (the default), then [subpixel
  averaging](Subpixel_Smoothing.md) is used when initializing the dielectric
  function. For simulations involving a [material function](#medium),
  `eps_averaging` is `False` (the default) and must be
  [enabled](Subpixel_Smoothing.md#enabling-averaging-for-material-function) in
  which case the input variables `subpixel_maxeval` (default 10<sup>4</sup>) and
  `subpixel_tol` (default 10<sup>-4</sup>) specify the maximum number of function
  evaluations and the integration tolerance for the adaptive numerical
  integration. Increasing/decreasing these, respectively, will cause a more
  accurate but slower computation of the average ε with diminishing returns for
  the actual FDTD error. Disabling subpixel averaging will lead to [staircasing
  effects and irregular
  convergence](Subpixel_Smoothing.md#what-happens-when-subpixel-smoothing-is-disabled).

+ **`force_complex_fields` [`boolean`]** — By default, Meep runs its simulations
  with purely real fields whenever possible. It uses complex fields which require
  twice the memory and computation if the `k_point` is non-zero or if `m` is
  non-zero. However, by setting `force_complex_fields` to `True`, Meep will always
  use complex fields.

+ **`force_all_components` [`boolean`]** — By default, in a 2d simulation Meep
  uses only the field components that might excited by your current sources:
  either the in-plane $(E_x,E_y,H_z)$ or out-of-plane $(H_x,H_y,E_z)$ polarization,
  depending on the source.  (Both polarizations are excited if you use multiple source
  polarizations, or if an anisotropic medium is present that couples the two
  polarizations.)   In rare cases (primarily for combining results of multiple
  simulations with differing polarizations), you might want to force it to
  simulate all fields, even those that remain zero throughout the simulation, by
  setting `force_all_components` to `True`.

+ **`filename_prefix` [`string`]** — A string prepended to all output filenames
  (e.g., for HDF5 files). If `None` (the default), then Meep constructs a default
  prefix based on the current Python filename ".py" replaced by "-" (e.g. `foo.py`
  uses a `"foo-"` prefix). You can get this prefix by calling `get_filename_prefix`.

+ **`Courant` [`number`]** — Specify the
  [Courant factor](https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition)
  $S$ which relates the time step size to the spatial discretization: $cΔ t = SΔ x$.
  Default is 0.5. For numerical stability, the Courant factor must be *at
  most* $n_\textrm{min}/\sqrt{\textrm{# dimensions}}$, where $n_\textrm{min}$ is
  the minimum refractive index (usually 1), and in practice $S$ should be slightly
  smaller.

+ **`loop_tile_base_db`, `loop_tile_base_eh` [`number`]** — To improve the [memory locality](https://en.wikipedia.org/wiki/Locality_of_reference)
  of the field updates, Meep has an experimental feature to "tile" the loops over the Yee grid
  voxels. The splitting of the update loops for step-curl and update-eh into tiles or subdomains
  involves a recursive-bisection method in which the base case for the number of voxels is
  specified using these two parameters, respectively. The default value is 0 or no tiling;
  a typical nonzero value to try would be 10000.

+ **`output_volume` [`Volume` class ]** — Specifies the default region of space
  that is output by the HDF5 output functions (below); see also the `Volume` class
  which manages `meep::volume*` objects. Default is `None`, which means that the
  whole cell is output. Normally, you should use the `in_volume(...)` function to
  modify the output volume instead of setting `output_volume` directly.

+ **`output_single_precision` [`boolean`]** — Meep performs its computations in
  [double-precision floating point](Build_From_Source.md#floating-point-precision-of-the-fields-and-materials-arrays),
  and by default its output HDF5 files are in the same format. However, by setting
  this variable to `True` (default is `False`) you can instead output in single
  precision which saves a factor of two in space.

+ **`progress_interval` [`number`]** — Time interval (seconds) after which Meep
  prints a progress message. Default is 4 seconds.

+ **`extra_materials` [ list of `Medium` class ]** — By default, Meep turns off
  support for material dispersion ([susceptibilities](#susceptibility) or
  [conductivity](Materials.md#conductivity-and-complex)) or nonlinearities if none
  of the objects in `geometry` have materials with these properties &mdash; since
  they are not needed, it is faster to omit their calculation. This doesn't work,
  however, if you use a `material_function`: materials via a user-specified
  function of position instead of just geometric objects. If your material
  function only returns a nonlinear material, for example, Meep won't notice this
  unless you tell it explicitly via `extra_materials`. `extra_materials` is a list
  of materials that Meep should look for in the cell in addition to any materials
  that are specified by geometric objects. You should list any materials other
  than scalar dielectrics that are returned by `material_function` here.

+ **`chunk_layout` [`string` or `Simulation` instance or `BinaryPartition` class]** —
  This will cause the `Simulation` to use the chunk layout described by either
  (1) an `.h5` file (created using `Simulation.dump_chunk_layout`), (2) another
  `Simulation` instance, or (3) a [`BinaryPartition`](#binarypartition) class object.
  For more information, see [Load and Dump Structure](#load-and-dump-structure) and
  [Parallel Meep/User-Specified Cell Partition](Parallel_Meep.md#user-specified-cell-partition).

The following require a bit more understanding of the inner workings of Meep to
use. See also [SWIG Wrappers](#swig-wrappers).

+ **`structure` [`meep::structure*`]** — Pointer to the current structure being
  simulated; initialized by `_init_structure` which is called automatically by
  `init_sim()` which is called automatically by any of the [run
  functions](#run-functions). The structure initialization is handled by the
  `Simulation` class, and most users will not need to call `_init_structure`.

+ **`fields` [`meep::fields*`]** — Pointer to the current fields being simulated;
  initialized by `init_sim()` which is called automatically by any of the [run
  functions](#run-functions).

+ **`num_chunks` [`integer`]** — Minimum number of "chunks" (subregions) to divide
  the structure/fields into. Overrides the default value determined by
  the number of processors, PML layers, etcetera. Mainly useful for debugging.

+ **`split_chunks_evenly` [`boolean`]** — When `True` (the default), the work per
  [chunk](Chunks_and_Symmetry.md) is not taken into account when splitting chunks
  up for multiple processors. The cell is simply split up into equal chunks (with
  the exception of PML regions, which must be on their own chunk). When `False`,
  Meep attempts to allocate an equal amount of work to each processor, which can
  increase the performance of [parallel simulations](Parallel_Meep.md).

</div>

</div>


<a id="Simulation.run"></a>

<div class="class_members" markdown="1">

```python
def run(self, *step_funcs, **kwargs):
def run(step_functions..., until=condition/time):
def run(step_functions..., until_after_sources=condition/time):
```

<div class="method_docstring" markdown="1">

`run(step_functions..., until=condition/time)`

Run the simulation until a certain time or condition, calling the given step
functions (if any) at each timestep. The keyword argument `until` is *either* a
number, in which case it is an additional time (in Meep units) to run for, *or* it
is a function (of no arguments) which returns `True` when the simulation should
stop. `until` can also be a list of stopping conditions which may include a number
of additional functions.

`run(step_functions..., until_after_sources=condition/time)`

Run the simulation until all sources have turned off, calling the given step
functions (if any) at each timestep. The keyword argument `until_after_sources` is
either a number, in which case it is an *additional* time (in Meep units) to run
for after the sources are off, *or* it is a function (of no arguments). In the
latter case, the simulation runs until the sources are off *and* `condition`
returns `True`. Like `until` above, `until_after_sources` can take a list of
stopping conditions.

</div>

</div>



### Output File Names

The output filenames used by Meep, e.g. for HDF5 files, are automatically prefixed by the
input variable `filename_prefix`. If `filename_prefix` is `None` (the default), however,
then Meep constructs a default prefix based on the current Python filename with `".py"`
replaced by `"-"`: e.g. `test.py` implies a prefix of `"test-"`. You can get this prefix,
or set the output folder, with these methods of the `Simulation` class:


<a id="Simulation.get_filename_prefix"></a>

<div class="class_members" markdown="1">

```python
def get_filename_prefix(self):
```

<div class="method_docstring" markdown="1">

Return the current prefix string that is prepended, by default, to all file names.

If you don't want to use any prefix, then you should set `filename_prefix` to the
empty string `''`.

In addition to the filename prefix, you can also specify that all the output files
be written into a newly-created directory (if it does not yet exist). This is done
by calling `Simulation.use_output_directory([dirname])`

</div>

</div>


<a id="Simulation.use_output_directory"></a>

<div class="class_members" markdown="1">

```python
def use_output_directory(self, dname: str = ''):
```

<div class="method_docstring" markdown="1">

Output all files into a subdirectory, which is created if necessary. If the optional
argument `dname` is specified, that is the name of the directory. If `dname`
is omitted and `filename_prefix` is `None`, the directory name is the current Python
filename with `".py"` replaced by `"-out"`: e.g. `test.py` implies a directory of
`"test-out"`. If `dname` is omitted and `filename_prefix` has been set, the directory
name is set to `filename_prefix` + "-out" and `filename_prefix` is then reset to `None`.

</div>

</div>



### Simulation Time

The `Simulation` class provides the following time-related methods:


<a id="Simulation.meep_time"></a>

<div class="class_members" markdown="1">

```python
def meep_time(self):
```

<div class="method_docstring" markdown="1">

Return the current simulation time in simulation time units (e.g. during a run
function). This is not the wall-clock time.

Occasionally, e.g. for termination conditions of the form $time < T?$, it is
desirable to round the time to single precision in order to avoid small
differences in roundoff error from making your results different by one timestep
from machine to machine (a difference much bigger than roundoff error); in this
case you can call `Simulation.round_time()` instead, which returns the time
rounded to single precision.

</div>

</div>


<a id="Simulation.print_times"></a>

<div class="class_members" markdown="1">

```python
def print_times(self):
```

<div class="method_docstring" markdown="1">

Call after running a simulation to print the times spent on various types of work.
Example output:

```
Field time usage:
        connecting chunks: 0.0156826 s +/- 0.002525 s
            time stepping: 0.996411 s +/- 0.232147 s
       copying boundaries: 0.148588 s +/- 0.0390397 s
    all-all communication: 1.39423 s +/- 0.581098 s
        1-1 communication: 0.136174 s +/- 0.0107685 s
     Fourier transforming: 0.0321625 s +/- 0.0614168 s
          MPB mode solver: 0.348019 s +/- 0.370068 s
          everything else: 0.207387 s +/- 0.0164821 s
```

</div>

</div>


<a id="Simulation.time_spent_on"></a>

<div class="class_members" markdown="1">

```python
def time_spent_on(self, time_sink):
```

<div class="method_docstring" markdown="1">

Return a list of times spent by each process for a type of work `time_sink` which
is the same as for `mean_time_spent_on`.

</div>

</div>


<a id="Simulation.mean_time_spent_on"></a>

<div class="class_members" markdown="1">

```python
def mean_time_spent_on(self, time_sink):
```

<div class="method_docstring" markdown="1">

Return the mean time spent by all processes for a type of work `time_sink` which
can be one of the following integer constants: `0`: "time stepping", `1`: "connecting chunks",
`2`: "copying boundaries", `3`: "all-all communication", `4`: "1-1 communication",
`5`: "outputting fields", `6`: "Fourier transforming", `7`: "MPB mode solver",
`8`: "near-to-far-field transform", `9`: "updating B field", `10`: "updating H field",
`11`: "updating D field", `12`: "updating E field", `13`: "boundary stepping B",
`14`: "boundary stepping WH", `15`: "boundary stepping PH", `16`: "boundary stepping H",
`17`: "boundary stepping D", `18`: "boundary stepping WE", `19`: "boundary stepping PE",
`20`: "boundary stepping E", `21`: "everything else".

</div>

</div>


<a id="Simulation.output_times"></a>

<div class="class_members" markdown="1">

```python
def output_times(self, fname):
```

<div class="method_docstring" markdown="1">

Call after running a simulation to output to a file with filename `fname` the
times spent on various types of work as CSV (comma separated values) with headers
for each column and one row per process.

</div>

</div>


### Field Computations

Meep supports a large number of functions to perform computations on the fields. Most of them are accessed via the lower-level C++/SWIG interface. Some of them are based on the following simpler, higher-level versions. They are accessible as methods of a `Simulation` instance.


<a id="Simulation.set_boundary"></a>

<div class="class_members" markdown="1">

```python
def set_boundary(self, side, direction, condition):
```

<div class="method_docstring" markdown="1">

Sets the condition of the boundary on the specified side in the specified
direction. See the [Constants (Enumerated Types)](#constants-enumerated-types)
section for valid `side`, `direction`, and `boundary_condition` values.

</div>

</div>


<a id="Simulation.phase_in_material"></a>

<div class="class_members" markdown="1">

```python
def phase_in_material(self, structure, time):
```

<div class="method_docstring" markdown="1">

`newstructure` should be the `structure` field of another
`Simulation` object with the same cell size and resolution.
Over the next time period `phasetime` (in the current
simulation's time units), the current structure
($\varepsilon$, $\mu$, and conductivity $\sigma_D$) will be
gradually changed to `newstructure`. In particular, at each
timestep it linearly interpolates between the old structure
and the new structure. After `phasetime` has elapsed, the
structure will remain equal to `newstructure`. This is
demonstrated in the following image for two
[Cylinder](#cylinder) objects (the simulation script is in
[examples/phase_in_material.py](https://github.com/NanoComp/meep/blob/master/python/examples/phase_in_material.py)).

![](images/phase-in-material.png#center)

</div>

</div>


<a id="Simulation.get_field_point"></a>

<div class="class_members" markdown="1">

```python
def get_field_point(self,
                    c: int = None,
                    pt: Union[meep.geom.Vector3, Tuple[float, ...]] = None):
```

<div class="method_docstring" markdown="1">

Given a `component` or `derived_component` constant `c` and a `Vector3` `pt`,
returns the value of that component at that point.

</div>

</div>


<a id="Simulation.get_epsilon_point"></a>

<div class="class_members" markdown="1">

```python
def get_epsilon_point(self,
                      pt: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
                      frequency: float = 0.0):
```

<div class="method_docstring" markdown="1">

Given a frequency `frequency` and a `Vector3` `pt`, returns the average eigenvalue
of the permittivity tensor at that location and frequency. If `frequency` is
non-zero, the result is complex valued; otherwise it is the real,
frequency-independent part of $\varepsilon$ (the $\omega\to\infty$ limit).

</div>

</div>


<a id="Simulation.get_mu_point"></a>

<div class="class_members" markdown="1">

```python
def get_mu_point(self,
                 pt: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
                 frequency: float = 0.0):
```

<div class="method_docstring" markdown="1">

Given a frequency `frequency` and a `Vector3` `pt`, returns the average eigenvalue
of the permeability tensor at that location and frequency. If `frequency` is
non-zero, the result is complex valued; otherwise it is the real,
frequency-independent part of $\mu$ (the $\omega\to\infty$ limit).

</div>

</div>


<a id="Simulation.get_epsilon_grid"></a>

<div class="class_members" markdown="1">

```python
def get_epsilon_grid(self,
                     xtics: numpy.ndarray = None,
                     ytics: numpy.ndarray = None,
                     ztics: numpy.ndarray = None,
                     frequency: float = 0.0):
```

<div class="method_docstring" markdown="1">

Given three 1d NumPy arrays (`xtics`,`ytics`,`ztics`) which define the coordinates of a Cartesian
grid anywhere within the cell volume, compute the trace of the $\varepsilon(f)$ tensor at frequency
$f$ (in Meep units) from the `geometry` exactly at each grid point. `frequency` defaults to 0 which is
the instantaneous $\varepsilon$. (For [`MaterialGrid`](#materialgrid)s, the $\varepsilon$ at each
grid point is computed using bilinear interpolation from the nearest `MaterialGrid` points and possibly
also projected to form a level set.) Note that this is different from `get_epsilon_point` which computes
$\varepsilon$ by bilinearly interpolating from the nearest Yee grid points. This function is useful for
sampling the material geometry to any arbitrary resolution. The return value is a NumPy array with shape
equivalent to `numpy.meshgrid(xtics,ytics,ztics)`. Empty dimensions are collapsed.

</div>

</div>


<a id="Simulation.initialize_field"></a>

<div class="class_members" markdown="1">

```python
def initialize_field(self,
                     cmpnt: int = None,
                     amp_func: Callable[[Union[meep.geom.Vector3, Tuple[float, ...]]], Union[float, complex]] = None):
```

<div class="method_docstring" markdown="1">

Initialize the component `c` fields using the function `func` which has a single
argument, a `Vector3` giving a position and returns a complex number for the value
of the field at that point.

</div>

</div>


<a id="Simulation.add_dft_fields"></a>

<div class="class_members" markdown="1">

```python
def add_dft_fields(self, *args, **kwargs):
def add_dft_fields(cs, fcen, df, nfreq, freq, where=None, center=None, size=None, yee_grid=False, decimation_factor=0, persist=False):
```

<div class="method_docstring" markdown="1">


Given a list of field components `cs`, compute the Fourier transform of these
fields for `nfreq` equally spaced frequencies covering the frequency range
`fcen-df/2` to `fcen+df/2` or an array/list `freq` for arbitrarily spaced
frequencies over the `Volume` specified by `where` (default to the entire cell).
The volume can also be specified via the `center` and `size` arguments. The
default routine interpolates the Fourier-transformed fields at the center of each
voxel within the specified volume. Alternatively, the exact Fourier-transformed
fields evaluated at each corresponding Yee grid point is available by setting
`yee_grid` to `True`. To reduce the memory-bandwidth burden of accumulating
DFT fields, an integer `decimation_factor` can be specified for updating the DFT
fields at every `decimation_factor` timesteps. If `decimation_factor` is 0 (the default),
this value is automatically determined from the
[Nyquist rate](https://en.wikipedia.org/wiki/Nyquist_rate) of the bandwidth-limited
sources and this DFT monitor. It can be turned off by setting it to 1. Use this feature
with care, as the decimated timeseries may be corrupted by
[aliasing](https://en.wikipedia.org/wiki/Aliasing) of high frequencies.

</div>

</div>


<a id="Simulation.flux_in_box"></a>

<div class="class_members" markdown="1">

```python
def flux_in_box(self, d, box=None, center=None, size=None):
```

<div class="method_docstring" markdown="1">

Given a `direction` constant, and a `mp.Volume`, returns the flux (the integral of
$\Re [\mathbf{E}^* \times \mathbf{H}]$) in that volume. Most commonly, you specify
a volume that is a plane or a line, and a direction perpendicular to it, e.g.

`flux_in_box(d=mp.X,mp.Volume(center=mp.Vector3(0,0,0),size=mp.Vector3(0,1,1)))`

If the `center` and `size` arguments are provided instead of `box`, Meep will
construct the appropriate volume for you.

</div>

</div>


<a id="Simulation.electric_energy_in_box"></a>

<div class="class_members" markdown="1">

```python
def electric_energy_in_box(self, box=None, center=None, size=None):
```

<div class="method_docstring" markdown="1">

Given a `mp.Volume`, returns the integral of the electric-field energy
$\mathbf{E}^* \cdot \mathbf{D}/2$ in the given volume. If the volume has zero size
along a dimension, a lower-dimensional integral is used. If the `center` and
`size` arguments are provided instead of `box`, Meep will construct the
appropriate volume for you. Note: in cylindrical coordinates $(r,\phi,z)$, the
integrand is
[multiplied](https://en.wikipedia.org/wiki/Cylindrical_coordinate_system#Line_and_volume_elements)
by the circumference $2\pi r$, or equivalently the integral is over an annular
volume.

</div>

</div>


<a id="Simulation.magnetic_energy_in_box"></a>

<div class="class_members" markdown="1">

```python
def magnetic_energy_in_box(self, box=None, center=None, size=None):
```

<div class="method_docstring" markdown="1">

Given a `mp.Volume`, returns the integral of the magnetic-field energy
$\mathbf{H}^* \cdot \mathbf{B}/2$ in the given volume. If the volume has zero size
along a dimension, a lower-dimensional integral is used. If the `center` and
`size` arguments are provided instead of `box`, Meep will construct the
appropriate volume for you. Note: in cylindrical coordinates $(r,\phi,z)$, the
integrand is
[multiplied](https://en.wikipedia.org/wiki/Cylindrical_coordinate_system#Line_and_volume_elements)
by the circumference $2\pi r$, or equivalently the integral is over an annular
volume.

</div>

</div>


<a id="Simulation.field_energy_in_box"></a>

<div class="class_members" markdown="1">

```python
def field_energy_in_box(self, box=None, center=None, size=None):
```

<div class="method_docstring" markdown="1">

Given a `mp.Volume`, returns the integral of the electric- and magnetic-field
energy $\mathbf{E}^* \cdot \mathbf{D}/2 + \mathbf{H}^* \cdot \mathbf{B}/2$ in the
given volume. If the volume has zero size along a dimension, a lower-dimensional
integral is used. If the `center` and `size` arguments are provided instead of
`box`, Meep will construct the appropriate volume for you. Note: in cylindrical
coordinates $(r,\phi,z)$, the integrand is
[multiplied](https://en.wikipedia.org/wiki/Cylindrical_coordinate_system#Line_and_volume_elements)
by the circumference $2\pi r$, or equivalently the integral is over an annular
volume.

</div>

</div>


<a id="Simulation.modal_volume_in_box"></a>

<div class="class_members" markdown="1">

```python
def modal_volume_in_box(self, box=None, center=None, size=None):
```

<div class="method_docstring" markdown="1">

Given a `mp.Volume`, returns the instantaneous modal volume
according to the Purcell-effect definition:
$\left(\int\varepsilon|\mathbf{E}|^2\right)/\left(\max{\varepsilon|\mathbf{E}|^2}\right)$.
If no volume argument is provided, the entire cell is used by
default. If the `center` and `size` arguments are provided
instead of `box`, Meep will construct the appropriate volume
for you.

Note that if you are at a fixed frequency and you use complex fields (via
Bloch-periodic boundary conditions or `fields_complex=True`), then one half of the
flux or energy integrals above corresponds to the time average of the flux or
energy for a simulation with real fields.

Often, you want the integration box to be the entire cell. A useful function to
return this box, which you can then use for the `box` arguments above, is
`Simulation.total_volume()`.

One versatile feature is that you can supply an arbitrary function
$f(\mathbf{x},c_1,c_2,\ldots)$ of position $\mathbf{x}$ and various field
components $c_1,\ldots$ and ask Meep to integrate it over a given volume, find its
maximum, or output it (via `output_field_function`, described later). This is done
via the functions:

</div>

</div>


<a id="Simulation.integrate_field_function"></a>

<div class="class_members" markdown="1">

```python
def integrate_field_function(self,
                             cs,
                             func,
                             where=None,
                             center=None,
                             size=None):
```

<div class="method_docstring" markdown="1">

Returns the integral of the complex-valued function `func` over the `Volume`
specified by `where` (defaults to entire cell) for the `meep::fields` contained in
the `Simulation` instance that calls this method. `func` is a function of position
(a `Vector3`, its first argument) and zero or more field components specified by
`cs`: a list of `component` constants. `func` can be real- or complex-valued. The
volume can optionally be specified via the `center` and `size` arguments.

If any dimension of `where` is zero, that dimension is not integrated over. In
this way you can specify 1d, 2d, or 3d integrals.

Note: in cylindrical coordinates $(r,\phi,z)$, the integrand is
[multiplied](https://en.wikipedia.org/wiki/Cylindrical_coordinate_system#Line_and_volume_elements)
by the circumference $2\pi r$, or equivalently the integral is over an annular
volume.

</div>

</div>


<a id="Simulation.max_abs_field_function"></a>

<div class="class_members" markdown="1">

```python
def max_abs_field_function(self,
                           cs,
                           func,
                           where=None,
                           center=None,
                           size=None):
```

<div class="method_docstring" markdown="1">

As `integrate_field_function`, but returns the maximum absolute value of `func` in
the volume `where` instead of its integral.

The integration is performed by summing over the grid points with a simple
trapezoidal rule, and the maximum is similarly over the grid points. See [Field
Functions](Field_Functions.md) for examples of how to call
`integrate_field_function` and `max_abs_field_function`. See [Synchronizing the
Magnetic and Electric Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md)
if you want to do computations combining the electric and magnetic fields. The
volume can optionally be specified via the `center` and `size` arguments.

Occasionally, one wants to compute an integral that combines fields from two
separate simulations (e.g. for nonlinear coupled-mode calculations). This
functionality is supported in Meep, as long as the two simulations have the *same*
cell, the same resolution, the same boundary conditions and symmetries (if any),
and the same PML layers (if any).

</div>

</div>


<a id="Simulation.integrate2_field_function"></a>

<div class="class_members" markdown="1">

```python
def integrate2_field_function(self,
                              fields2,
                              cs1,
                              cs2,
                              func,
                              where=None,
                              center=None,
                              size=None):
```

<div class="method_docstring" markdown="1">

Similar to `integrate_field_function`, but takes additional parameters `fields2`
and `cs2`. `fields2` is a `meep::fields*` object similar to the global `fields`
variable (see below) specifying the fields from another simulation. `cs1` is a
list of components to integrate with from the `meep::fields` instance in
`Simulation.fields`, as for `integrate_field_function`, while `cs2` is a list of
components to integrate from `fields2`. Similar to `integrate_field_function`,
`func` is a function that returns an number given arguments consisting of: the
position vector, followed by the values of the components specified by `cs1` (in
order), followed by the values of the components specified by `cs2` (in order).
The volume can optionally be specified via the `center` and `size` arguments.

To get two fields in memory at once for `integrate2_field_function`, the easiest
way is to run one simulation within a given Python file, then save the results in
another fields variable, then run a second simulation. This would look something
like:

```py
...set up and run first simulation...
fields2 = sim.fields # save the fields in a variable
sim.fields = None    # prevent the fields from getting deallocated by reset-meep
sim.reset_meep()
...set up and run second simulation...
```

It is also possible to timestep both fields simultaneously (e.g. doing one
timestep of one simulation then one timestep of another simulation, and so on, but
this requires you to call much lower-level functions like `fields_step()`.

</div>

</div>



### Reloading Parameters

Once the fields/simulation have been initialized, you can change the values of various parameters by using the following functions (which are members of the `Simulation` class):


<a id="Simulation.reset_meep"></a>

<div class="class_members" markdown="1">

```python
def reset_meep(self):
```

<div class="method_docstring" markdown="1">

Reset all of Meep's parameters, deleting the fields, structures, etcetera, from
memory as if you had not run any computations. If the `num_chunks` or `chunk_layout`
attributes have been modified internally, they are reset to their original
values passed in at instantiation.

</div>

</div>


<a id="Simulation.restart_fields"></a>

<div class="class_members" markdown="1">

```python
def restart_fields(self):
```

<div class="method_docstring" markdown="1">

Restart the fields at time zero, with zero fields. Does *not* reset the Fourier
transforms of the flux planes, which continue to be accumulated.

</div>

</div>


<a id="Simulation.change_k_point"></a>

<div class="class_members" markdown="1">

```python
def change_k_point(self, k):
```

<div class="method_docstring" markdown="1">

Change the `k_point` (the Bloch periodicity).

</div>

</div>


<a id="Simulation.change_sources"></a>

<div class="class_members" markdown="1">

```python
def change_sources(self, new_sources):
```

<div class="method_docstring" markdown="1">

Change the list of sources in `Simulation.sources` to `new_sources`, and changes
the sources used for the current simulation. `new_sources` must be a list of
`Source` objects.

</div>

</div>


<a id="Simulation.set_materials"></a>

<div class="class_members" markdown="1">

```python
def set_materials(self,
                  geometry: List[meep.geom.GeometricObject] = None,
                  default_material: meep.geom.Medium = None):
```

<div class="method_docstring" markdown="1">

This can be called in a step function, and is useful for changing the geometry or
default material as a function of time.

</div>

</div>



### Flux Spectra

Given a bunch of [`FluxRegion`](#fluxregion) objects, you can tell Meep to accumulate the Fourier transforms of the fields in those regions in order to compute the Poynting flux spectra. (Note: as a matter of convention, the "intensity" of the electromagnetic fields refers to the Poynting flux, *not* to the [energy density](#energy-density-spectra).) See also [Introduction/Transmittance/Reflectance Spectra](Introduction.md#transmittancereflectance-spectra) and [Tutorial/Basics/Transmittance Spectrum of a Waveguide Bend](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend). These are attributes of the `Simulation` class. The most important function is:


<a id="Simulation.add_flux"></a>

<div class="class_members" markdown="1">

```python
def add_flux(self, *args, **kwargs):
def add_flux(fcen, df, nfreq, freq, FluxRegions, decimation_factor=0):
```

<div class="method_docstring" markdown="1">


Add a bunch of `FluxRegion`s to the current simulation (initializing the fields if
they have not yet been initialized), telling Meep to accumulate the appropriate
field Fourier transforms for `nfreq` equally spaced frequencies covering the
frequency range `fcen-df/2` to `fcen+df/2` or an array/list `freq` for arbitrarily
spaced frequencies. Return a *flux object*, which you can pass to the functions
below to get the flux spectrum, etcetera. To reduce the memory-bandwidth burden of
accumulating DFT fields, an integer `decimation_factor` can be specified for updating the DFT
fields at every `decimation_factor` timesteps. If `decimation_factor` is 0 (the default),
this value is automatically determined from the
[Nyquist rate](https://en.wikipedia.org/wiki/Nyquist_rate) of the bandwidth-limited
sources and this DFT monitor. It can be turned off by setting it to 1. Use this feature
with care, as the decimated timeseries may be corrupted by
[aliasing](https://en.wikipedia.org/wiki/Aliasing) of high frequencies. The choice
of decimation factor should take into account the properties of all sources
in the simulation as well as the frequency range of the DFT field monitor.

</div>

</div>


As described in the tutorial, you normally use `add_flux` via statements like:

```python
transmission = sim.add_flux(...)
```

to store the flux object in a variable.  You can create as many flux objects as you want, e.g. to look at powers flowing in different regions or in different frequency ranges. Note, however, that Meep has to store (and update at every time step) a number of Fourier components equal to the number of grid points intersecting the flux region multiplied by the number of electric and magnetic field components required to get the Poynting vector multiplied by `nfreq`, so this can get quite expensive (in both memory and time) if you want a lot of frequency points over large regions of space.

Once you have called `add_flux`, the Fourier transforms of the fields are accumulated automatically during time-stepping by the [run functions](#run-functions). At any time, you can ask for Meep to print out the current flux spectrum via the `display_fluxes` method.


<a id="Simulation.display_fluxes"></a>

<div class="class_members" markdown="1">

```python
def display_fluxes(self, *fluxes):
```

<div class="method_docstring" markdown="1">

Given a number of flux objects, this displays a comma-separated table of
frequencies and flux spectra, prefixed by "flux1:" or similar (where the number is
incremented after each run). All of the fluxes should be for the same
`fcen`/`df`/`nfreq` or `freq`. The first column are the frequencies, and
subsequent columns are the flux spectra.

</div>

</div>


You might have to do something lower-level if you have multiple flux regions corresponding to *different* frequency ranges, or have other special needs. `display_fluxes(f1, f2, f3)` is actually equivalent to `meep.display_csv("flux", meep.get_flux_freqs(f1), meep.get_fluxes(f1), meep.get_fluxes(f2), meep.get_fluxes(f3))`, where `display_csv` takes a bunch of lists of numbers and prints them as a comma-separated table; this involves calling two lower-level functions:


<a id="get_flux_freqs"></a>

```python
def get_flux_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="get_fluxes"></a>

```python
def get_fluxes(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the current flux spectrum that it has
accumulated.

</div>


As described in [Introduction/Transmittance/Reflectance Spectra](Introduction.md#transmittancereflectance-spectra) and [Tutorial/Basics/Transmittance Spectrum of a Waveguide Bend](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend), for a reflection spectrum you often want to save the Fourier-transformed fields from a "normalization" run and then load them into another run to be subtracted. This can be done via:


<a id="Simulation.save_flux"></a>

<div class="class_members" markdown="1">

```python
def save_flux(self, fname, flux):
```

<div class="method_docstring" markdown="1">

Save the Fourier-transformed fields corresponding to the given flux object in an
HDF5 file of the given `filename` without the `.h5` suffix (the current
filename-prefix is prepended automatically).

</div>

</div>


<a id="Simulation.load_flux"></a>

<div class="class_members" markdown="1">

```python
def load_flux(self, fname, flux):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given flux object (replacing any
values currently there) from an HDF5 file of the given `filename` without the
`.h5` suffix (the current filename-prefix is prepended automatically). You must
load from a file that was saved by `save_flux` in a simulation of the same
dimensions (for both the cell and the flux regions) with the same number of
processors and chunk layout.

</div>

</div>


<a id="Simulation.load_minus_flux"></a>

<div class="class_members" markdown="1">

```python
def load_minus_flux(self, fname, flux):
```

<div class="method_docstring" markdown="1">

As `load_flux`, but negates the Fourier-transformed fields after they are loaded.
This means that they will be *subtracted* from any future field Fourier transforms
that are accumulated.

</div>

</div>


Sometimes it is more convenient to keep the Fourier-transformed fields in memory rather than writing them to a file and immediately loading them back again. To that end, the `Simulation` class exposes the following three methods:


<a id="Simulation.get_flux_data"></a>

<div class="class_members" markdown="1">

```python
def get_flux_data(self, flux):
```

<div class="method_docstring" markdown="1">

Get the Fourier-transformed fields corresponding to the given flux object as a
`FluxData`, which is just a named tuple of NumPy arrays. Note that this object is
only useful for passing to `load_flux_data` below and should be considered opaque.

</div>

</div>


<a id="Simulation.load_flux_data"></a>

<div class="class_members" markdown="1">

```python
def load_flux_data(self, flux, fdata):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given flux object (replacing any
values currently there) from the `FluxData` object `fdata`. You must load from an
object that was created by `get_flux_data` in a simulation of the same dimensions
(for both the cell and the flux regions) with the same number of processors and
chunk layout.

</div>

</div>


<a id="Simulation.load_minus_flux_data"></a>

<div class="class_members" markdown="1">

```python
def load_minus_flux_data(self, flux, fdata):
```

<div class="method_docstring" markdown="1">

As `load_flux_data`, but negates the Fourier-transformed fields after they are
loaded. This means that they will be *subtracted* from any future field Fourier
transforms that are accumulated.

</div>

</div>



The `Simulation` class also provides some aliases for the corresponding "flux" methods.

* **`save_mode`**
* **`load_mode`**
* **`load_minus_mode`**
* **`get_mode_data`**
* **`load_mode_data`**
* **`load_minus_mode_data`**


### Mode Decomposition

Given a structure, Meep can decompose the Fourier-transformed fields into a superposition of its harmonic modes. For a theoretical background, see [Features/Mode Decomposition](Mode_Decomposition.md).


<a id="Simulation.get_eigenmode_coefficients"></a>

<div class="class_members" markdown="1">

```python
def get_eigenmode_coefficients(self,
                               flux,
                               bands,
                               eig_parity=mp.NO_PARITY,
                               eig_vol=None,
                               eig_resolution=0,
                               eig_tolerance=1e-12,
                               kpoint_func=None,
                               direction=mp.AUTOMATIC):
```

<div class="method_docstring" markdown="1">

Given a flux object and list of band indices `bands` or `DiffractedPlanewave`, return a `namedtuple` with the
following fields:

+ `alpha`: the complex eigenmode coefficients as a 3d NumPy array of size
  (`len(bands)`, `flux.nfreqs`, `2`). The last/third dimension refers to modes
  propagating in the forward (+) or backward (-) directions defined relative to
  the mode's dominant wavevector.
+ `vgrp`: the group velocity as a NumPy array.
+ `kpoints`: a list of `mp.Vector3`s of the `kpoint` used in the mode calculation.
+ `kdom`: a list of `mp.Vector3`s of the mode's dominant wavevector.
+ `cscale`: a NumPy array of each mode's scaling coefficient. Useful for adjoint
  calculations.

</div>

</div>


The flux object should be created using `add_mode_monitor`.  (You could also use `add_flux`, but with `add_flux` you need to be more careful about symmetries that bisect the flux plane: the `add_flux` object should only be used with `get_eigenmode_coefficients` for modes of the same symmetry, e.g. constrained via `eig_parity`.  On the other hand, the performance of `add_flux` planes benefits more from symmetry.) `eig_vol` is the volume passed to [MPB](https://mpb.readthedocs.io) for the eigenmode calculation (based on interpolating the discretized materials from the Yee grid); in most cases this will simply be the volume over which the frequency-domain fields are tabulated, which is the default (i.e. `flux.where`). `eig_parity` should be one of [`mp.NO_PARITY` (default), `mp.EVEN_Z`, `mp.ODD_Z`, `mp.EVEN_Y`, `mp.ODD_Y`]. It is the parity (= polarization in 2d) of the mode to calculate, assuming the structure has $z$ and/or $y$ mirror symmetry *in the source region*, just as for `EigenModeSource` above. If the structure has both $y$ and $z$ mirror symmetry, you can combine more than one of these, e.g. `EVEN_Z+ODD_Y`. Default is `NO_PARITY`, in which case MPB computes all of the bands which will still be even or odd if the structure has mirror symmetry, of course. This is especially useful in 2d simulations to restrict yourself to a desired polarization. `eig_resolution` is the spatial resolution to use in MPB for the eigenmode calculations. This defaults to twice the Meep `resolution` in which case the structure is linearly interpolated from the Meep pixels. `eig_tolerance` is the tolerance to use in the MPB eigensolver. MPB terminates when the eigenvalues stop changing to less than this fractional tolerance. Defaults to `1e-12`.  (Note that this is the tolerance for the frequency eigenvalue $\omega$; the tolerance for the mode profile is effectively the square root of this.) For examples, see [Tutorial/Mode Decomposition](Python_Tutorials/Mode_Decomposition.md).

Technically, MPB computes $\omega_n(\mathbf{k})$ and then inverts it with Newton's method to find the wavevector $\mathbf{k}$ normal to `eig_vol` and mode for a given frequency; in rare cases (primarily waveguides with *nonmonotonic* dispersion relations, which doesn't usually happen in simple dielectric waveguides), MPB may need you to supply an initial "guess" for $\mathbf{k}$ in order for this Newton iteration to converge.  You can supply this initial guess with `kpoint_func`, which is a function `kpoint_func(f, n)` that supplies a rough initial guess for the $\mathbf{k}$ of band number $n$ at frequency $f=\omega/2\pi$. (By default, the $\mathbf{k}$ components in the plane of the `eig_vol` region are zero.  However, if this region spans the *entire* cell in some directions, and the cell has Bloch-periodic boundary conditions via the `k_point` parameter, then the mode's $\mathbf{k}$ components in those directions will match `k_point` so that the mode satisfies the Meep boundary conditions, regardless of `kpoint_func`.) If `direction` is set to `mp.NO_DIRECTION`, then `kpoint_func` is not only the initial guess and the search direction of the $\mathbf{k}$ vectors, but is also taken to be the direction of the waveguide, allowing you to [detect modes in oblique waveguides](Python_Tutorials/Eigenmode_Source.md#oblique-waveguides) (not perpendicular to the flux plane).

**Note:** for planewaves in homogeneous media, the `kpoints` may *not* necessarily be equivalent to the actual wavevector of the mode. This quantity is given by `kdom`.

Note that Meep's MPB interface only supports dispersionless non-magnetic materials but it does support anisotropic $\varepsilon$. Any nonlinearities, magnetic responses $\mu$ conductivities $\sigma$, or dispersive polarizations in your materials will be *ignored* when computing the mode decomposition. PML will also be ignored.


<a id="Simulation.add_mode_monitor"></a>

<div class="class_members" markdown="1">

```python
def add_mode_monitor(self, *args, **kwargs):
def add_mode_monitor(fcen, df, nfreq, freq, ModeRegions, decimation_factor=0):
```

<div class="method_docstring" markdown="1">


Similar to `add_flux`, but for use with `get_eigenmode_coefficients`.

</div>

</div>


`add_mode_monitor` works properly with arbitrary symmetries, but may be suboptimal because the Fourier-transformed region does not exploit the symmetry.  As an optimization, if you have a mirror plane that bisects the mode monitor, you can instead use `add_flux` to gain a factor of two, but in that case you *must* also pass the corresponding `eig_parity` to `get_eigenmode_coefficients` in order to only compute eigenmodes with the corresponding mirror symmetry.


<a id="Simulation.get_eigenmode"></a>

<div class="class_members" markdown="1">

```python
def get_eigenmode(self,
                  frequency,
                  direction,
                  where,
                  band_num,
                  kpoint,
                  eig_vol=None,
                  match_frequency=True,
                  parity=mp.NO_PARITY,
                  resolution=0,
                  eigensolver_tol=1e-12):
```

<div class="method_docstring" markdown="1">

The parameters of this routine are the same as that of
`get_eigenmode_coefficients` or `EigenModeSource`, but this function returns an
object that can be used to inspect the computed mode.  In particular, it returns
an `EigenmodeData` instance with the following fields:

+ `band_num`: same as a single element of the `bands` parameter
+ `freq`: the computed frequency, same as the `frequency` input parameter if
  `match_frequency=True`
+ `group_velocity`: the group velocity of the mode in `direction`
+ `k`: the Bloch wavevector of the mode in `direction`
+ `kdom`: the dominant planewave of mode `band_num`
+ `amplitude(point, component)`: the (complex) value of the given $\mathbf{E}$ or $\mathbf{H}$ field
  `component` (`Ex`, `Hy`, etcetera) at a particular `point` (a `Vector3`) in
  space (interpreted with Bloch-periodic boundary conditions if you give a point
  outside the original `eig_vol`).

If `match_frequency=False` or `kpoint` is not zero in the given `direction`, the
`frequency` input parameter is ignored.

</div>

</div>


The following top-level function is also available:


<a id="get_eigenmode_freqs"></a>

```python
def get_eigenmode_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


---
<a id="DiffractedPlanewave"></a>

### DiffractedPlanewave

```python
class DiffractedPlanewave(object):
```

<div class="class_docstring" markdown="1">

For mode decomposition or eigenmode source, specify a diffracted planewave in homogeneous media. Should be passed as the `bands` argument of `get_eigenmode_coefficients`, `band_num` of `get_eigenmode`, or `eig_band` of `EigenModeSource`.

</div>


<a id="DiffractedPlanewave.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             g: List[int] = None,
             axis: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
             s: complex = None,
             p: complex = None):
```

<div class="method_docstring" markdown="1">

Construct a `DiffractedPlanewave`.

+ **`g` [ list of 3 `integer`s ]** — The diffraction order $(m_x,m_y,m_z)$ corresponding to the wavevector $(k_x+2\pi m_x/\Lambda_x,k_y+2\pi m_y/\Lambda_y,k_z+2\pi m_z/\Lambda_z)$. $(k_x,k_y,k_z)$ is the `k_point` (wavevector specifying the Bloch-periodic boundaries) of the `Simulation` class object. The diffraction order $m_{x,y,z}$ should be non-zero only in the $d$-1 periodic directions of a $d$ dimensional cell of size $(\Lambda_x,\Lambda_y,\Lambda_z)$ (e.g., a plane in 3d) in which the mode monitor or source extends the entire length of the cell.

+ **`axis` [ `Vector3` ]** — The plane of incidence for each planewave (used to define the $\mathcal{S}$ and $\mathcal{P}$ polarizations below) is defined to be the plane that contains the `axis` vector and the planewave's wavevector. If `None`, `axis` defaults to the first direction that lies in the plane of the monitor or source (e.g., $y$ direction for a $yz$ plane in 3d, either $x$ or $y$ in 2d).

+ **`s` [ `complex` ]** — The complex amplitude of the $\mathcal{S}$ polarziation (i.e., electric field perpendicular to the plane of incidence).

+ **`p` [ `complex` ]** — The complex amplitude of the $\mathcal{P}$ polarziation (i.e., electric field parallel to the plane of incidence).

</div>

</div>


### Energy Density Spectra

Very similar to flux spectra, you can also compute **energy density spectra**: the energy density of the electromagnetic fields as a function of frequency, computed by Fourier transforming the fields and integrating the energy density:

$$ \frac{1}{2}ε|\mathbf{E}|^2 + \frac{1}{2}μ|\mathbf{H}|^2 $$

The usage is similar to the flux spectra: you define a set of [`EnergyRegion`](#EnergyRegion) objects telling Meep where it should compute the Fourier-transformed fields and energy densities, and call `add_energy` to add these regions to the current simulation over a specified frequency bandwidth, and then use `display_electric_energy`, `display_magnetic_energy`, or `display_total_energy` to display the energy density spectra at the end. There are also `save_energy`, `load_energy`, and `load_minus_energy` functions that you can use to subtract the fields from two simulation, e.g. in order to compute just the energy from scattered fields, similar to the flux spectra. The function used to add an [`EnergyRegion`](#EnergyRegion) is as follows:


<a id="Simulation.add_energy"></a>

<div class="class_members" markdown="1">

```python
def add_energy(self, *args, **kwargs):
def add_energy(fcen, df, nfreq, freq, EnergyRegions, decimation_factor=0):
```

<div class="method_docstring" markdown="1">


Add a bunch of `EnergyRegion`s to the current simulation (initializing the fields
if they have not yet been initialized), telling Meep to accumulate the appropriate
field Fourier transforms for `nfreq` equally spaced frequencies covering the
frequency range `fcen-df/2` to `fcen+df/2` or an array/list `freq` for arbitrarily
spaced frequencies. Return an *energy object*, which you can pass to the functions
below to get the energy spectrum, etcetera. To reduce the memory-bandwidth burden of
accumulating DFT fields, an integer `decimation_factor` can be specified for updating the DFT
fields at every `decimation_factor` timesteps. If `decimation_factor` is 0 (the default),
this value is automatically determined from the
[Nyquist rate](https://en.wikipedia.org/wiki/Nyquist_rate) of the bandwidth-limited
sources and this DFT monitor. It can be turned off by setting it to 1. Use this feature
with care, as the decimated timeseries may be corrupted by
[aliasing](https://en.wikipedia.org/wiki/Aliasing) of high frequencies.

</div>

</div>


As for flux regions, you normally use `add_energy` via statements like:

```py
En = sim.add_energy(...)
```

to store the energy object in a variable.  You can create as many energy objects as you want, e.g. to look at the energy densities in different objects or in different frequency ranges. Note, however, that Meep has to store (and update at every time step) a number of Fourier components equal to the number of grid points intersecting the energy region multiplied by `nfreq`, so this can get quite expensive (in both memory and time) if you want a lot of frequency points over large regions of space.

Once you have called `add_energy`, the Fourier transforms of the fields are accumulated automatically during time-stepping by the `run` functions. At any time, you can ask for Meep to print out the current energy density spectrum via:


<a id="Simulation.display_electric_energy"></a>

<div class="class_members" markdown="1">

```python
def display_electric_energy(self, *energys):
```

<div class="method_docstring" markdown="1">

Given a number of energy objects, this displays a comma-separated table of
frequencies and energy density spectra for the electric fields prefixed by
"electric_energy1:" or similar (where the number is incremented after each run).
All of the energy should be for the same `fcen`/`df`/`nfreq` or `freq`. The first
column are the frequencies, and subsequent columns are the energy density spectra.

</div>

</div>


<a id="Simulation.display_magnetic_energy"></a>

<div class="class_members" markdown="1">

```python
def display_magnetic_energy(self, *energys):
```

<div class="method_docstring" markdown="1">

Given a number of energy objects, this displays a comma-separated table of
frequencies and energy density spectra for the magnetic fields prefixed by
"magnetic_energy1:" or similar (where the number is incremented after each run).
All of the energy should be for the same `fcen`/`df`/`nfreq` or `freq`. The first
column are the frequencies, and subsequent columns are the energy density spectra.

</div>

</div>


<a id="Simulation.display_total_energy"></a>

<div class="class_members" markdown="1">

```python
def display_total_energy(self, *energys):
```

<div class="method_docstring" markdown="1">

Given a number of energy objects, this displays a comma-separated table of
frequencies and energy density spectra for the total fields "total_energy1:" or
similar (where the number is incremented after each run). All of the energy should
be for the same `fcen`/`df`/`nfreq` or `freq`. The first column are the
frequencies, and subsequent columns are the energy density spectra.

</div>

</div>



You might have to do something lower-level if you have multiple energy regions corresponding to *different* frequency ranges, or have other special needs. `display_electric_energy(e1, e2, e3)` is actually equivalent to `meep.display_csv("electric_energy", meep.get_energy_freqs(e1), meep.get_electric_energy(e1), meep.get_electric_energy(e2), meep.get_electric_energy(e3))`, where `display_csv` takes a bunch of lists of numbers and prints them as a comma-separated table; this involves calling lower-level functions:


<a id="get_energy_freqs"></a>

```python
def get_energy_freqs(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="get_electric_energy"></a>

```python
def get_electric_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
electric fields that it has accumulated.

</div>


<a id="get_magnetic_energy"></a>

```python
def get_magnetic_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
magnetic fields that it has accumulated.

</div>


<a id="get_total_energy"></a>

```python
def get_total_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
total fields that it has accumulated.

</div>


As described in [Introduction/Transmittance/Reflectance Spectra](Introduction.md#transmittancereflectance-spectra) and [Tutorial/Basics/Transmittance Spectrum of a Waveguide Bend](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend) for flux computations, to compute the energy density from the scattered fields you often want to save the Fourier-transformed fields from a "normalization" run and then load them into another run to be subtracted. This can be done via:


<a id="Simulation.save_energy"></a>

<div class="class_members" markdown="1">

```python
def save_energy(self,
                fname: str,
                energy: meep.simulation.DftEnergy):
```

<div class="method_docstring" markdown="1">

Save the Fourier-transformed fields corresponding to the given energy object in an
HDF5 file of the given `filename` without the `.h5` suffix (the current
filename-prefix is prepended automatically).

</div>

</div>


<a id="Simulation.load_energy"></a>

<div class="class_members" markdown="1">

```python
def load_energy(self,
                fname: str,
                energy: meep.simulation.DftEnergy):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given energy object (replacing any
values currently there) from an HDF5 file of the given `filename` without the
`.h5` suffix (the current filename-prefix is prepended automatically). You must
load from a file that was saved by `save_energy` in a simulation of the same
dimensions for both the cell and the energy regions with the same number of
processors and chunk layout.

</div>

</div>


<a id="Simulation.load_minus_energy"></a>

<div class="class_members" markdown="1">

```python
def load_minus_energy(self,
                      fname: str,
                      energy: meep.simulation.DftEnergy):
```

<div class="method_docstring" markdown="1">

As `load_energy`, but negates the Fourier-transformed fields after they are
loaded. This means that they will be *subtracted* from any future field Fourier
transforms that are accumulated.

</div>

</div>



### Force Spectra

Very similar to flux spectra, you can also compute **force spectra**: forces on an object as a function of frequency, computed by Fourier transforming the fields and integrating the vacuum [Maxwell stress tensor](https://en.wikipedia.org/wiki/Maxwell_stress_tensor):

$$\sigma_{ij} = E_i^*E_j + H_i^*H_j - \frac{1}{2} δ_{ij} \left( |\mathbf{E}|^2 + |\mathbf{H}|^2 \right)$$

over a surface $S$ via $\mathbf{F} = \int_S \sigma d\mathbf{A}$. You should normally **only evaluate the stress tensor over a surface lying in vacuum**, as the interpretation and definition of the stress tensor in arbitrary media is often problematic (the subject of extensive and controversial literature). It is fine if the surface *encloses* an object made of arbitrary materials, as long as the surface itself is in vacuum.

See also [Tutorial/Optical Forces](Python_Tutorials/Optical_Forces.md).

Most commonly, you will want to **normalize** the force spectrum in some way, just as for flux spectra. Most simply, you could divide two different force spectra to compute the ratio of forces on two objects. Often, you will divide a force spectrum by a flux spectrum, to divide the force $F$ by the incident power $P$ on an object, in order to compute the useful dimensionless ratio $Fc$/$P$ where $c=1$ in Meep units. For example, it is a simple exercise to show that the force $F$ on a perfectly reflecting mirror with normal-incident power $P$ satisfies $Fc$/$P=2$, and for a perfectly absorbing (black) surface $Fc$/$P=1$.

The usage is similar to the [flux spectra](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend): you define a set of [`ForceRegion`](#ForceRegion) objects telling Meep where it should compute the Fourier-transformed fields and stress tensors, and call `add_force` to add these regions to the current simulation over a specified frequency bandwidth, and then use `display_forces` to display the force spectra at the end. There are also `save_force`, `load_force`, and `load_minus_force` functions that you can use to subtract the fields from two simulation, e.g. in order to compute just the force from scattered fields, similar to the flux spectra. The function used to add a [`ForceRegion`](#ForceRegion) object is defined as follows:


<a id="Simulation.add_force"></a>

<div class="class_members" markdown="1">

```python
def add_force(self, *args, **kwargs):
def add_force(fcen, df, nfreq, freq, ForceRegions, decimation_factor=0):
```

<div class="method_docstring" markdown="1">


Add a bunch of `ForceRegion`s to the current simulation (initializing the fields
if they have not yet been initialized), telling Meep to accumulate the appropriate
field Fourier transforms for `nfreq` equally spaced frequencies covering the
frequency range `fcen-df/2` to `fcen+df/2` or an array/list `freq` for arbitrarily
spaced frequencies. Return a `force`object, which you can pass to the functions
below to get the force spectrum, etcetera. To reduce the memory-bandwidth burden of
accumulating DFT fields, an integer `decimation_factor` can be specified for updating the DFT
fields at every `decimation_factor` timesteps. If `decimation_factor` is 0 (the default),
this value is automatically determined from the
[Nyquist rate](https://en.wikipedia.org/wiki/Nyquist_rate) of the bandwidth-limited
sources and this DFT monitor. It can be turned off by setting it to 1. Use this feature
with care, as the decimated timeseries may be corrupted by
[aliasing](https://en.wikipedia.org/wiki/Aliasing) of high frequencies.

</div>

</div>


As for flux regions, you normally use `add_force` via statements like:

```py
Fx = sim.add_force(...)
```

to store the force object in a variable.  You can create as many force objects as you want, e.g. to look at forces on different objects, in different directions, or in different frequency ranges. Note, however, that Meep has to store (and update at every time step) a number of Fourier components equal to the number of grid points intersecting the force region, multiplied by the number of electric and magnetic field components required to get the stress vector, multiplied by `nfreq`, so this can get quite expensive (in both memory and time) if you want a lot of frequency points over large regions of space.

Once you have called `add_force`, the Fourier transforms of the fields are accumulated automatically during time-stepping by the `run` functions. At any time, you can ask for Meep to print out the current force spectrum via:


<a id="Simulation.display_forces"></a>

<div class="class_members" markdown="1">

```python
def display_forces(self, *forces):
```

<div class="method_docstring" markdown="1">

Given a number of force objects, this displays a comma-separated table of
frequencies and force spectra, prefixed by "force1:" or similar (where the number
is incremented after each run). All of the forces should be for the same
`fcen`/`df`/`nfreq` or `freq`. The first column are the frequencies, and
subsequent columns are the force spectra.

</div>

</div>


You might have to do something lower-level if you have multiple force regions corresponding to *different* frequency ranges, or have other special needs. `display_forces(f1, f2, f3)` is actually equivalent to `meep.display_csv("force", meep.get_force_freqs(f1), meep.get_forces(f1), meep.get_forces(f2), meep.get_forces(f3))`, where `display_csv` takes a bunch of lists of numbers and prints them as a comma-separated table; this involves calling two lower-level functions:



<a id="get_force_freqs"></a>

```python
def get_force_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a force object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="get_forces"></a>

```python
def get_forces(f):
```

<div class="function_docstring" markdown="1">

Given a force object, returns a list of the current force spectrum that it has
accumulated.

</div>



As described in [Introduction/Transmittance/Reflectance Spectra](Introduction.md#transmittancereflectance-spectra) and [Tutorial/Basics/Transmittance Spectrum of a Waveguide Bend](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend) for flux computations, to compute the force from the scattered fields often requires saving the Fourier-transformed fields from a "normalization" run and then loading them into another run to be subtracted. This can be done via these `Simulation` methods:


<a id="Simulation.save_force"></a>

<div class="class_members" markdown="1">

```python
def save_force(self, fname, force):
```

<div class="method_docstring" markdown="1">

Save the Fourier-transformed fields corresponding to the given force object in an
HDF5 file of the given `filename` without the `.h5` suffix (the current
filename-prefix is prepended automatically).

</div>

</div>


<a id="Simulation.load_force"></a>

<div class="class_members" markdown="1">

```python
def load_force(self, fname, force):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given force object (replacing any
values currently there) from an HDF5 file of the given `filename` without the
`.h5` suffix (the current filename-prefix is prepended automatically). You must
load from a file that was saved by `save_force` in a simulation of the same
dimensions for both the cell and the force regions with the same number of
processors and chunk layout.

</div>

</div>


<a id="Simulation.load_minus_force"></a>

<div class="class_members" markdown="1">

```python
def load_minus_force(self, fname, force):
```

<div class="method_docstring" markdown="1">

As `load_force`, but negates the Fourier-transformed fields after they are loaded.
This means that they will be *subtracted* from any future field Fourier transforms
that are accumulated.

</div>

</div>


To keep the fields in memory and avoid writing to and reading from a file, use the following three `Simulation` methods:


<a id="Simulation.get_force_data"></a>

<div class="class_members" markdown="1">

```python
def get_force_data(self, force):
```

<div class="method_docstring" markdown="1">

Get the Fourier-transformed fields corresponding to the given force object as a
`ForceData`, which is just a named tuple of NumPy arrays. Note that this object is
only useful for passing to `load_force_data` below and should be considered
opaque.

</div>

</div>


<a id="Simulation.load_force_data"></a>

<div class="class_members" markdown="1">

```python
def load_force_data(self, force, fdata):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given force object (replacing any
values currently there) from the `ForceData` object `fdata`. You must load from an
object that was created by `get_force_data` in a simulation of the same dimensions
(for both the cell and the flux regions) with the same number of processors and
chunk layout.

</div>

</div>


<a id="Simulation.load_minus_force_data"></a>

<div class="class_members" markdown="1">

```python
def load_minus_force_data(self, force, fdata):
```

<div class="method_docstring" markdown="1">

As `load_force_data`, but negates the Fourier-transformed fields after they are
loaded. This means that they will be *subtracted* from any future field Fourier
transforms that are accumulated.

</div>

</div>


### LDOS spectra

Meep can also calculate the LDOS (local density of states) spectrum, as described in [Tutorial/Local Density of States](Python_Tutorials/Local_Density_of_States.md). To do this, you simply pass the following step function to your `run` command:


<a id="Ldos"></a>

```python
def Ldos(*args):
def Ldos(fcen, df, nfreq, freq):
```

<div class="function_docstring" markdown="1">


Create an LDOS object with either frequency bandwidth `df` centered at `fcen` and
`nfreq` equally spaced frequency points or an array/list `freq` for arbitrarily spaced
frequencies. This can be passed to the `dft_ldos` step function below as a keyword
argument.

</div>


<a id="get_ldos_freqs"></a>

```python
def get_ldos_freqs(l):
```

<div class="function_docstring" markdown="1">

Given an LDOS object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="dft_ldos"></a>

```python
def dft_ldos(*args, **kwargs):
def dft_ldos(fcen=None, df=None, nfreq=None, freq=None, ldos=None):
```

<div class="function_docstring" markdown="1">


Compute the power spectrum of the sources (usually a single point dipole source),
normalized to correspond to the LDOS, in either a frequency bandwidth `df` centered at
`fcen` and `nfreq` equally spaced frequency points or an array/list `freq` for
arbitrarily spaced frequencies. One can also pass in an `Ldos` object as
`dft_ldos(ldos=my_Ldos)`.

The resulting spectrum is outputted as comma-delimited text, prefixed by `ldos:,`, and
is also stored in the `ldos_data` variable of the `Simulation` object after the `run`
is complete. The Fourier-transformed electric field and current source are stored in
the `ldos_Fdata` and `ldos_Jdata` of the `Simulation` object, respectively.

</div>



Analytically, the per-polarization LDOS is exactly proportional to the power radiated by an $\ell$-oriented point-dipole current, $p(t)$, at a given position in space. For a more mathematical treatment of the theory behind the LDOS, refer to the relevant discussion in Section 4.4 ("Currents and Fields: The Local Density of States") in [Chapter 4](http://arxiv.org/abs/arXiv:1301.5366) ("Electromagnetic Wave Source Conditions") of the book [Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology](https://www.amazon.com/Advances-FDTD-Computational-Electrodynamics-Nanotechnology/dp/1608071707), but for now it is defined as:

$$\operatorname{LDOS}_{\ell}(\vec{x}_0,\omega)=-\frac{2}{\pi}\varepsilon(\vec{x}_0)\frac{\operatorname{Re}[\hat{E}_{\ell}(\vec{x}_0,\omega)\hat{p}(\omega)^*]}{|\hat{p}(\omega)|^2}$$

where the $|\hat{p}(\omega)|^2$ normalization is necessary for obtaining the power exerted by a unit-amplitude dipole (assuming linear materials), and hats denote Fourier transforms. It is this quantity that is computed by the `dft_ldos` command for a single dipole source. For a volumetric source, the numerator and denominator are both integrated over the current volume, but "LDOS" computation is less meaningful in this case.

### Near-to-Far-Field Spectra

Meep can compute a near-to-far-field transformation in the frequency domain as described in [Tutorial/Near-to-Far Field Spectra](Python_Tutorials/Near_to_Far_Field_Spectra.md): given the fields on a "near" bounding surface inside the cell, it can compute the fields arbitrarily far away using an analytical transformation, assuming that the "near" surface and the "far" region lie in a single homogeneous non-periodic 2d, 3d, or cylindrical region. That is, in a simulation *surrounded by PML* that absorbs outgoing waves, the near-to-far-field feature can compute the fields outside the cell as if the outgoing waves had not been absorbed (i.e. in the fictitious infinite open volume). Moreover, this operation is performed on the Fourier-transformed fields: like the flux and force spectra above, you specify a set of desired frequencies, Meep accumulates the Fourier transforms, and then Meep computes the fields at *each frequency* for the desired far-field points.

This is based on the principle of equivalence: given the Fourier-transformed tangential fields on the "near" surface, Meep computes equivalent currents and convolves them with the analytical Green's functions in order to compute the fields at any desired point in the "far" region. For details, see Section 4.2.1 ("The Principle of Equivalence") in [Chapter 4](http://arxiv.org/abs/arXiv:1301.5366) ("Electromagnetic Wave Source Conditions") of the book [Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology](https://www.amazon.com/Advances-FDTD-Computational-Electrodynamics-Nanotechnology/dp/1608071707). Since the "far" fields are computed using the full Green's functions, they should be able to be computed *anywhere* outside of the near-field surface monitor. The only limiting factor should be discretization errors but for any given distannce, the "far" fields should converge to the actual DFT fields at that location with resolution (assuming the distance separation is >> resolution).

There are three steps to using the near-to-far-field feature: first, define the "near" surface(s) as a set of surfaces capturing *all* outgoing radiation in the desired direction(s); second, run the simulation, typically with a pulsed source, to allow Meep to accumulate the Fourier transforms on the near surface(s); third, tell Meep to compute the far fields at any desired points (optionally saving the far fields from a grid of points to an HDF5 file). To define the near surfaces, use this `Simulation` method:


<a id="Simulation.add_near2far"></a>

<div class="class_members" markdown="1">

```python
def add_near2far(self, *args, **kwargs):
def add_near2far(fcen, df, nfreq, freq, Near2FarRegions, nperiods=1, decimation_factor=0):
```

<div class="method_docstring" markdown="1">


Add a bunch of `Near2FarRegion`s to the current simulation (initializing the
fields if they have not yet been initialized), telling Meep to accumulate the
appropriate field Fourier transforms for `nfreq` equally spaced frequencies
covering the frequency range `fcen-df/2` to `fcen+df/2` or an array/list `freq`
for arbitrarily spaced frequencies. Return a `near2far` object, which you can pass
to the functions below to get the far fields. To reduce the memory-bandwidth burden of
accumulating DFT fields, an integer `decimation_factor` can be specified for updating the DFT
fields at every `decimation_factor` timesteps. If `decimation_factor` is 0 (the default),
this value is automatically determined from the
[Nyquist rate](https://en.wikipedia.org/wiki/Nyquist_rate) of the bandwidth-limited
sources and this DFT monitor. It can be turned off by setting it to 1. Use this feature
with care, as the decimated timeseries may be corrupted by
[aliasing](https://en.wikipedia.org/wiki/Aliasing) of high frequencies.

</div>

</div>


Each `Near2FarRegion` is identical to `FluxRegion` except for the name: in 3d, these give a set of planes (**important:** all these "near surfaces" must lie in a single *homogeneous* material with *isotropic* ε and μ &mdash; and they should *not* lie in the PML regions) surrounding the source(s) of outgoing radiation that you want to capture and convert to a far field. Ideally, these should form a closed surface, but in practice it is sufficient for the `Near2FarRegion`s to capture all of the radiation in the direction of the far-field points. **Important:** as for flux computations, each `Near2FarRegion` should be assigned a `weight` of &#177;1 indicating the direction of the outward normal relative to the +coordinate direction. So, for example, if you have six regions defining the six faces of a cube, i.e. the faces in the $+x$, $-x$, $+y$, $-y$, $+z$, and $-z$ directions, then they should have weights +1, -1, +1, -1, +1, and -1 respectively. Note that, neglecting discretization errors, all near-field surfaces that enclose the same outgoing fields are equivalent and will yield the same far fields with a discretization-induced difference that vanishes with increasing resolution etc.

After the simulation run is complete, you can compute the far fields. This is usually for a pulsed source so that the fields have decayed away and the Fourier transforms have finished accumulating.

If you have Bloch-periodic boundary conditions, then the corresponding near-to-far transformation actually needs to perform a "lattice sum" of infinitely many periodic copies of the near fields.  This doesn't happen by default, which means the default `near2far` calculation may not be what you want for periodic boundary conditions.  However, if the `Near2FarRegion` spans the entire cell along the periodic directions, you can turn on an approximate lattice sum by passing `nperiods > 1`.  In particular, it then sums `2*nperiods+1` Bloch-periodic copies of the near fields whenever a far field is requested.  You can repeatedly double `nperiods` until the answer converges to your satisfaction; in general, if the far field is at a distance $d$, and the period is $a$, then you want `nperiods` to be much larger than $d/a$.  (Future versions of Meep may use fancier techniques like [Ewald summation](https://en.wikipedia.org/wiki/Ewald_summation) to compute the lattice sum more rapidly at large distances.)


<a id="Simulation.get_farfield"></a>

<div class="class_members" markdown="1">

```python
def get_farfield(self, near2far, x):
```

<div class="method_docstring" markdown="1">

Given a `Vector3` point `x` which can lie anywhere outside the near-field surface,
including outside the cell and a `near2far` object, returns the computed
(Fourier-transformed) "far" fields at `x` as list of length 6`nfreq`, consisting
of fields $(E_x^1,E_y^1,E_z^1,H_x^1,H_y^1,H_z^1,E_x^2,E_y^2,E_z^2,H_x^2,H_y^2,H_z^2,...)$
in Cartesian coordinates and
$(E_r^1,E_\phi^1,E_z^1,H_r^1,H_\phi^1,H_z^1,E_r^2,E_\phi^2,E_z^2,H_r^2,H_\phi^2,H_z^2,...)$
in cylindrical coordinates for the frequencies 1,2,...,`nfreq`.

</div>

</div>


<a id="Simulation.output_farfields"></a>

<div class="class_members" markdown="1">

```python
def output_farfields(self,
                     near2far,
                     fname: str = None,
                     resolution: float = None,
                     where: meep.simulation.Volume = None,
                     center: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
                     size: Union[meep.geom.Vector3, Tuple[float, ...]] = None):
```

<div class="method_docstring" markdown="1">

Given an HDF5 file name `fname` (does *not* include the `.h5` suffix), a `Volume`
given by `where` (may be 0d, 1d, 2d, or 3d), and a `resolution` (in grid points /
distance unit), outputs the far fields in `where` (which may lie *outside* the
cell) in a grid with the given resolution (which may differ from the FDTD grid
resolution) to the HDF5 file as a set of twelve array datasets `ex.r`, `ex.i`,
..., `hz.r`, `hz.i`, giving the real and imaginary parts of the
Fourier-transformed $\mathbf{E}$ and $\mathbf{H}$ fields on this grid. Each dataset
is an $n_x \times n_y \times n_z \times nfreq$ 4d array of $space \times frequency$
although dimensions that are equal to one are omitted. The volume can optionally be
specified via `center` and `size`.

</div>

</div>


<a id="Simulation.get_farfields"></a>

<div class="class_members" markdown="1">

```python
def get_farfields(self,
                  near2far,
                  resolution: float = None,
                  where: meep.simulation.Volume = None,
                  center: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
                  size: Union[meep.geom.Vector3, Tuple[float, ...]] = None):
```

<div class="method_docstring" markdown="1">

Like `output_farfields` but returns a dictionary of NumPy arrays instead of
writing to a file. The dictionary keys are `Ex`, `Ey`, `Ez`, `Hx`, `Hy`, `Hz`.
Each array has the same shape as described in `output_farfields`.

Note that far fields have the same units and scaling as the *Fourier transforms*
of the fields, and hence cannot be directly compared to time-domain fields. In
practice, it is easiest to use the far fields in computations where overall
scaling (units) cancel out or are irrelevant, e.g. to compute the fraction of the
far fields in one region vs. another region.

</div>

</div>


This lower-level function is also available:


<a id="get_near2far_freqs"></a>

```python
def get_near2far_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a `near2far` object, returns a list of the frequencies that it is computing the
spectrum for.

</div>



(Multi-frequency `get_farfields` and `output_farfields` can be accelerated by
[compiling Meep](Build_From_Source.md#meep) with `--with-openmp` and using the
`OMP_NUM_THREADS` environment variable to specify multiple threads.)

For a scattered-field computation, you often want to separate the scattered and incident fields. As described in [Introduction/Transmittance/Reflectance Spectra](Introduction.md#transmittancereflectance-spectra) and [Tutorial/Basics/Transmittance Spectrum of a Waveguide Bend](Scheme_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend) for flux computations, you can do this by saving the Fourier-transformed incident from a "normalization" run and then load them into another run to be subtracted. This can be done via these `Simulation` methods:


<a id="Simulation.save_near2far"></a>

<div class="class_members" markdown="1">

```python
def save_near2far(self, fname, near2far):
```

<div class="method_docstring" markdown="1">

Save the Fourier-transformed fields corresponding to the given `near2far` object
in an HDF5 file of the given `filename` (without the `.h5` suffix). The current
filename-prefix is prepended automatically.

</div>

</div>


<a id="Simulation.load_near2far"></a>

<div class="class_members" markdown="1">

```python
def load_near2far(self, fname, near2far):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the given `near2far` object (replacing
any values currently there) from an HDF5 file of the given `filename` without the
`.h5` suffix (the current filename-prefix is prepended automatically). You must
load from a file that was saved by `save_near2far` in a simulation of *the same
dimensions* for both the cell and the near2far regions with the same number of
processors and chunk layout.

</div>

</div>


<a id="Simulation.load_minus_near2far"></a>

<div class="class_members" markdown="1">

```python
def load_minus_near2far(self, fname, near2far):
```

<div class="method_docstring" markdown="1">

As `load_near2far`, but negates the Fourier-transformed fields after they are
loaded. This means that they will be *subtracted* from any future field Fourier
transforms that are accumulated.

</div>

</div>



To keep the fields in memory and avoid writing to and reading from a file, use the following three methods:


<a id="Simulation.get_near2far_data"></a>

<div class="class_members" markdown="1">

```python
def get_near2far_data(self, near2far):
```

<div class="method_docstring" markdown="1">

Get the Fourier-transformed fields corresponding to the given `near2far` object as
a `NearToFarData`, which is just a named tuple of NumPy arrays. Note that this
object is only useful for passing to `load_near2far_data` below and should be
considered opaque.

</div>

</div>


<a id="Simulation.load_near2far_data"></a>

<div class="class_members" markdown="1">

```python
def load_near2far_data(self, near2far, n2fdata):
```

<div class="method_docstring" markdown="1">

Load the Fourier-transformed fields into the `near2far` object (replacing any
values currently there) from the `NearToFarData` object `n2fdata`. You must load
from an object that was created by `get_near2far_data` in a simulation of the same
dimensions (for both the cell and the flux regions) with the same number of
processors and chunk layout.

</div>

</div>


<a id="Simulation.load_minus_near2far_data"></a>

<div class="class_members" markdown="1">

```python
def load_minus_near2far_data(self, near2far, n2fdata):
```

<div class="method_docstring" markdown="1">

As `load_near2far_data`, but negates the Fourier-transformed fields after they are
loaded. This means that they will be *subtracted* from any future field Fourier
transforms that are accumulated.

</div>

</div>


See also this lower-level function:


<a id="scale_near2far_fields"></a>

```python
def scale_near2far_fields(s, near2far):
```

<div class="function_docstring" markdown="1">

Scale the Fourier-transformed fields in `near2far` by the complex number `s`. e.g.
`load_minus_near2far` is equivalent to `load_near2far` followed by
`scale_near2far_fields` with `s=-1`.

</div>


And this [`DftNear2Far`](#DftNear2Far) method:


<a id="DftNear2Far.flux"></a>

<div class="class_members" markdown="1">

```python
def flux(self,
         direction: int = None,
         where: meep.simulation.Volume = None,
         resolution: float = None):
```

<div class="method_docstring" markdown="1">

Given a `Volume` `where` (may be 0d, 1d, 2d, or 3d) and a `resolution` (in grid
points / distance unit), compute the far fields in `where` (which may lie
*outside* the cell) in a grid with the given resolution (which may differ from the
FDTD solution) and return its Poynting flux in `direction` as a list. The dataset
is a 1d array of `nfreq` dimensions.

</div>

</div>



### Load and Dump Simulation State

These functions add support for saving and restoring parts of the
`Simulation` state.

For all functions listed below, when dumping/loading state to/from a distributed filesystem
(using say, parallel HDF5) and running in an MPI environment, setting
`single_parallel_file=True` (the default) will result in all
processes writing/reading to/from the same/single file after computing their respective offsets into this file.
When set to `False`, each process writes/reads data for the chunks it owns
to/from a separate, process unique file.

#### Load and Dump Structure

These functions dump the raw ε and μ data to disk and load it back for doing multiple simulations with the same materials but different sources etc. The only prerequisite is that the dump/load simulations have the same [chunks](Chunks_and_Symmetry.md) (i.e. the same grid, number of processors, symmetries, and PML). When using `split_chunks_evenly=False`, you must also dump the original chunk layout using `dump_chunk_layout` and load it into the new `Simulation` using the `chunk_layout` parameter. Currently only stores dispersive and non-dispersive $\varepsilon$ and $\mu$ but not nonlinearities. Note that loading data from a file in this way overwrites any `geometry` data passed to the `Simulation` constructor.


<a id="Simulation.dump_structure"></a>

<div class="class_members" markdown="1">

```python
def dump_structure(self,
                   fname: str = None,
                   single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Dumps the structure to the file `fname`.

</div>

</div>


<a id="Simulation.load_structure"></a>

<div class="class_members" markdown="1">

```python
def load_structure(self,
                   fname: str = None,
                   single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Loads a structure from the file `fname`.

</div>

</div>


#### Load and Dump Chunk Layout


<a id="Simulation.dump_chunk_layout"></a>

<div class="class_members" markdown="1">

```python
def dump_chunk_layout(self, fname: str = None):
```

<div class="method_docstring" markdown="1">

Dumps the chunk layout to file `fname`.

</div>

</div>


To load a chunk layout into a `Simulation`, use the `chunk_layout` argument to the constructor, passing either a file obtained from `dump_chunk_layout` or another `Simulation` instance. Note that when using `split_chunks_evenly=False` this parameter is required when saving and loading flux spectra, force spectra, or near-to-far spectra so that the two runs have the same chunk layout. Just pass the `Simulation` object from the first run to the second run:

```python
# Split chunks based on amount of work instead of size
sim1 = mp.Simulation(..., split_chunks_evenly=False)
norm_flux = sim1.add_flux(...)
sim1.run(...)
sim1.save_flux(...)

# Make sure the second run uses the same chunk layout as the first
sim2 = mp.Simulation(..., chunk_layout=sim1)
flux = sim2.add_flux(...)
sim2.load_minus_flux(...)
sim2.run(...)
```

#### Load and Dump Fields

These functions can be used to dump (and later load) the time-domain fields, auxiliary
fields for PMLs, polarization fields (for dispersive materials), and the DFT fields
at a certain timestamp. The timestamp at which the dump happens is also saved so that
the simulation can continue from where it was saved. The one pre-requisite of this
feature is that it needs the `Simulation` object to have been setup *exactly* the
same as the one it was dumped from.


<a id="Simulation.dump_fields"></a>

<div class="class_members" markdown="1">

```python
def dump_fields(self,
                fname: str = None,
                single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Dumps the fields to the file `fname`.

</div>

</div>


<a id="Simulation.load_fields"></a>

<div class="class_members" markdown="1">

```python
def load_fields(self,
                fname: str = None,
                single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Loads a fields from the file `fname`.

</div>

</div>


#### Checkpoint and Restore

The above dump/load related functions can be used to implement a
checkpoint/restore *like* feature. The caveat of this feature is that
it does *not* store all the state required to re-create the `Simulation` object
itself. Instead, it expects the user to create and set up the new `Simulation`
object to be *exactly* the same as the one the state was dumped from.


<a id="Simulation.dump"></a>

<div class="class_members" markdown="1">

```python
def dump(self,
         dirname: str = None,
         dump_structure: bool = True,
         dump_fields: bool = True,
         single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Dumps simulation state.

</div>

</div>


<a id="Simulation.load"></a>

<div class="class_members" markdown="1">

```python
def load(self,
         dirname: str,
         load_structure: bool = True,
         load_fields: bool = True,
         single_parallel_file: bool = True):
```

<div class="method_docstring" markdown="1">

Loads simulation state.

This should called right after the Simulation object has been created
but before 'init_sim' is called.

</div>

</div>


Example usage:

```python
# Setup, run and dump the simulation.
sim1 = mp.Simulation(...)
sim1.run(..., until=xx)
sim1.dump(dirname, dump_structure=True, dump_fields=True, ...)

...

# Later in the same or a new process/run
sim2 = mp.Simulation(<same setup as sim1>)
sim2.load(dirname, load_structure=True, load_fields=True, ...)
sim2.run(...)  # continues from t=xx
```

### Frequency-Domain Solver

Meep contains a frequency-domain solver that computes the fields produced in a geometry in response to a [continuous-wave (CW) source](https://en.wikipedia.org/wiki/Continuous_wave). This is based on an [iterative linear solver](https://en.wikipedia.org/wiki/Iterative_method) instead of time-stepping. For details, see Section 5.3 ("Frequency-domain solver") of [Computer Physics Communications, Vol. 181, pp. 687-702 (2010)](http://ab-initio.mit.edu/~oskooi/papers/Oskooi10.pdf). Benchmarking results have shown that in many instances, such as cavities (e.g., [ring resonators](Python_Tutorials/Frequency_Domain_Solver.md)) with long-lived resonant modes, this solver converges much faster than simply running an equivalent time-domain simulation with a CW source (using the default `width` of zero for no transient turn-on), time-stepping until all transient effects from the source turn-on have disappeared, especially if the fields are desired to a very high accuracy.

To use the frequency-domain solver, simply define a `ContinuousSource` with the desired frequency and [initialize the fields and geometry](#initializing-the-structure-and-fields) via `init_sim()`:

```py
sim = mp.Simulation(...)
sim.init_sim()
sim.solve_cw(tol, maxiters, L)
```

The first two parameters to the frequency-domain solver are the tolerance `tol` for the iterative solver (10<sup>−8</sup>, by default) and a maximum number of iterations `maxiters` (10<sup>4</sup>, by default). Finally, there is a parameter $L$ that determines a tradeoff between memory and work per step and convergence rate of the iterative algorithm, biconjugate gradient stabilized ([BiCGSTAB-L](https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method)), that is used; larger values of $L$ will often lead to faster convergence at the expense of more memory and more work per iteration. Default is $L=2$, and normally a value ≥ 2 should be used.

The frequency-domain solver supports arbitrary geometries, PML, boundary conditions, symmetries, parallelism, conductors, and arbitrary nondispersive materials. Lorentz-Drude dispersive materials are not currently supported in the frequency-domain solver, but since you are solving at a known fixed frequency rather than timestepping, you should be able to pick conductivities etcetera in order to obtain any desired complex ε and μ at that frequency.

The frequency-domain solver requires you to use complex-valued fields, via `force_complex_fields=True`.

After `solve_cw` completes, it should be as if you had just run the simulation for an infinite time with the source at that frequency. You can call the various field-output functions and so on as usual at this point. For examples, see [Tutorial/Frequency Domain Solver](Python_Tutorials/Frequency_Domain_Solver.md) and [Tutorial/Mode Decomposition/Reflectance and Transmittance Spectra for Planewave at Oblique Incidence](Python_Tutorials/Mode_Decomposition.md#reflectance-and-transmittance-spectra-for-planewave-at-oblique-incidence).

**Note:** The convergence of the iterative solver can sometimes encounter difficulties. For example, increasing the diameter of a ring resonator relative to the wavelength increases the [condition number](https://en.wikipedia.org/wiki/Condition_number), which worsens the convergence of iterative solvers. The general way to improve this is to implement a more sophisticated iterative solver that employs [preconditioners](https://en.wikipedia.org/wiki/Preconditioner). Preconditioning wave equations (Helmholtz-like equations) is notoriously difficult to do well, but some possible strategies are discussed in [Issue #548](https://github.com/NanoComp/meep/issues/548). In the meantime, a simpler way improving convergence (at the expense of computational cost) is to increase the $L$ parameter and the number of iterations.

### Frequency-Domain Eigensolver

Building on the frequency-domain solver above, Meep also includes a frequency-domain eigensolver that computes resonant frequencies and modes in the frequency domain.  The usage is very similar to `solve_cw`:

```py
sim = mp.Simulation(...)
sim.init_sim()
eigfreq = sim.solve_eigfreq(tol, maxiters, guessfreq, cwtol, cwmaxiters, L)
```

The `solve_eig` routine performs repeated calls to `solve_cw` in a way that converges to the resonant mode whose frequency is *closest* to the source frequency.  The complex resonant-mode frequency is returned, and the mode Q can be computed from `eigfreq.real / (-2*eigfreq.imag)`.  Upon return, the fields should be the corresponding resonant mode (with an arbitrary scaling).

The resonant mode is converged to a relative error of roughly `tol`, which defaults to `1e-7`. A maximum of `maxiters` (defaults to `100`) calls to `solve_cw` are performed.  The tolerance for each `solve_cw` call is `cwtol` (defaults to `tol*1e-3`) and the maximum iterations is `cwmaxiters` (10<sup>4</sup>, by default); the `L` parameter (defaults to `10`) is also passed through to `solve_cw`.

The closer the input frequency is to the resonant-mode frequency, the faster `solve_eig` should converge. Instead of using the source frequency, you can instead pass a `guessfreq` argument to `solve_eigfreq` specifying an input frequency (which may even be complex).

Technically, `solve_eig` is using a [shift-and-invert power iteration](https://en.wikipedia.org/wiki/Inverse_iteration) to compute the resonant mode, as reviewed in [Frequency-Domain Eigensolver](Eigensolver_Math.md).

As for `solve_cw` above, you are required to set `force_complex_fields=True` to use `solve_eigfreq`.

### GDSII Support

This feature is only available if Meep is built with [libGDSII](Build_From_Source.md#libgdsii). It so, then the following functions are available:


<a id="GDSII_layers"></a>

```python
def GDSII_layers(fname):
```

<div class="function_docstring" markdown="1">

Returns a list of integer-valued layer indices for the layers present in
the specified GDSII file.

```python
mp.GDSII_layers('python/examples/coupler.gds')
Out[2]: [0, 1, 2, 3, 4, 5, 31, 32]
```

</div>


<a id="GDSII_prisms"></a>

```python
def GDSII_prisms(material, fname, layer=-1, zmin=0.0, zmax=0.0):
```

<div class="function_docstring" markdown="1">

Returns a list of `GeometricObject`s with `material` (`mp.Medium`) on layer number
`layer` of a GDSII file `fname` with `zmin` and `zmax` (default 0).

</div>


<a id="GDSII_vol"></a>

```python
def GDSII_vol(fname, layer, zmin, zmax):
```

<div class="function_docstring" markdown="1">

Returns a `mp.Volume` read from a GDSII file `fname` on layer number `layer` with
`zmin` and `zmax` (default 0). This function is useful for creating a `FluxRegion`
from a GDSII file as follows:

```python
fr = mp.FluxRegion(volume=mp.GDSII_vol(fname, layer, zmin, zmax))
```

</div>



### Data Visualization

This module provides basic visualization functionality for the simulation domain. The intent of the module is to provide functions that can be called with *no customization options whatsoever* and will do useful relevant things by default, but which can also be customized in cases where you *do* want to take the time to spruce up the output. The `Simulation` class provides the following methods:


<a id="Simulation.plot2D"></a>

<div class="class_members" markdown="1">

```python
def plot2D(self,
           ax: Optional[matplotlib.axes._axes.Axes] = None,
           output_plane: Optional[meep.simulation.Volume] = None,
           fields: Optional = None,
           labels: Optional[bool] = False,
           eps_parameters: Optional[dict] = None,
           boundary_parameters: Optional[dict] = None,
           source_parameters: Optional[dict] = None,
           monitor_parameters: Optional[dict] = None,
           field_parameters: Optional[dict] = None,
           colorbar_parameters: Optional[dict] = None,
           frequency: Optional[float] = None,
           plot_eps_flag: bool = True,
           plot_sources_flag: bool = True,
           plot_monitors_flag: bool = True,
           plot_boundaries_flag: bool = True,
           nb: bool = False,
           **kwargs):
```

<div class="method_docstring" markdown="1">

Plots a 2D cross section of the simulation domain using `matplotlib`. The plot
includes the geometry, boundary layers, sources, and monitors. Fields can also be
superimposed on a 2D slice. Requires [matplotlib](https://matplotlib.org). Calling
this function would look something like:

```py
sim = mp.Simulation(...)
sim.run(...)
field_func = lambda x: 20*np.log10(np.abs(x))
import matplotlib.pyplot as plt
sim.plot2D(fields=mp.Ez,
           field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none', 'post_process':field_func},
           boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
plt.show()
plt.savefig('sim_domain.png')
```
If you just want to quickly visualize the simulation domain without the fields (i.e., when
setting up your simulation), there is no need to invoke the `run` function prior to calling
`plot2D`. Just define the `Simulation` object followed by any DFT monitors and then
invoke `plot2D`.

Note: When running a [parallel simulation](Parallel_Meep.md), the `plot2D` function expects
to be called on all processes, but only generates a plot on the master process.

**Parameters:**

* `ax`: a `matplotlib` axis object. `plot2D()` will add plot objects, like lines,
  patches, and scatter plots, to this object. If no `ax` is supplied, then the
  routine will create a new figure and grab its axis.
* `output_plane`: a `Volume` object that specifies the plane over which to plot.
  Must be 2D and a subset of the grid volume (i.e., it should not extend beyond
  the cell).
* `fields`: the field component (`mp.Ex`, `mp.Ey`, `mp.Ez`, `mp.Hx`, `mp.Hy`,
  `mp.Hz`) to superimpose over the simulation geometry. Default is `None`, where
  no fields are superimposed.
* `labels`: if `True`, then labels will appear over each of the simulation
  elements.
* `eps_parameters`: a `dict` of optional plotting parameters that override the
  default parameters for the geometry.
    - `interpolation='spline36'`: interpolation algorithm used to upsample the pixels.
    - `cmap='binary'`: the color map of the geometry
    - `alpha=1.0`: transparency of geometry
    - `contour=False`: if `True`, plot a contour of the geometry rather than its image
    - `contour_linewidth=1`: line width of the contour lines if `contour=True`
    - `frequency=None`: for materials with a [frequency-dependent
      permittivity](Materials.md#material-dispersion) $\varepsilon(f)$, specifies the
      frequency $f$ (in Meep units) of the real part of the permittivity to use in the
      plot. Defaults to the `frequency` parameter of the [Source](#source) object.
    - `resolution=None`: the resolution of the $\varepsilon$ grid. Defaults to the
      `resolution` of the `Simulation` object.
    - `colorbar=False`: whether to add a colorbar to the plot's parent Figure based on epsilon values.
* `boundary_parameters`: a `dict` of optional plotting parameters that override
  the default parameters for the boundary layers.
    - `alpha=1.0`: transparency of boundary layers
    - `facecolor='g'`: color of polygon face
    - `edgecolor='g'`: color of outline stroke
    - `linewidth=1`: line width of outline stroke
    - `hatch='\'`: hatching pattern
* `source_parameters`: a `dict` of optional plotting parameters that override the
  default parameters for the sources.
    - `color='r'`: color of line and pt sources
    - `alpha=1.0`: transparency of source
    - `facecolor='none'`: color of polygon face for planar sources
    - `edgecolor='r'`: color of outline stroke for planar sources
    - `linewidth=1`: line width of outline stroke
    - `hatch='\'`: hatching pattern
    - `label_color='r'`: color of source labels
    - `label_alpha=0.3`: transparency of source label box
    - `offset=20`: distance from source center and label box
* `monitor_parameters`: a `dict` of optional plotting parameters that override the
  default parameters for the monitors.
    - `color='g'`: color of line and point monitors
    - `alpha=1.0`: transparency of monitors
    - `facecolor='none'`: color of polygon face for planar monitors
    - `edgecolor='r'`: color of outline stroke for planar monitors
    - `linewidth=1`: line width of outline stroke
    - `hatch='\'`: hatching pattern
    - `label_color='g'`: color of source labels
    - `label_alpha=0.3`: transparency of monitor label box
    - `offset=20`: distance from monitor center and label box
* `field_parameters`: a `dict` of optional plotting parameters that override the
  default parameters for the fields.
    - `interpolation='spline36'`: interpolation function used to upsample field pixels
    - `cmap='RdBu'`: color map for field pixels
    - `alpha=0.6`: transparency of fields
    - `post_process=np.real`: post processing function to apply to fields (must be
      a function object)
    - `colorbar=False`: whether to add a colorbar to the plot's parent Figure based on field values.
* `colorbar_parameters`:  a `dict` of optional plotting parameters that override the default parameters for
  the colorbar.
    - `label=None`: an optional label for the colorbar, defaults to '$\epsilon_r$' for epsilon and
    'field values' for fields.
    - `orientation='vertical'`: the orientation of the colorbar gradient
    - `extend=None`: make pointed end(s) for out-of-range values. Allowed values are:
    ['neither', 'both', 'min', 'max']
    - `format=None`: formatter for tick labels. Can be an fstring (i.e. "{x:.2e}") or a
    [matplotlib.ticker.ScalarFormatter](https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.ScalarFormatter).
    - `position='right'`: position of the colorbar with respect to the Axes
    - `size='5%'`: size of the colorbar in the dimension perpendicular to its `orientation`
    - `pad='2%'`: fraction of original axes between colorbar and image axes
* `nb`: set this to True if plotting in a Jupyter notebook to use ipympl for plotting. Note: this requires
ipympl to be installed.

</div>

</div>


<a id="Simulation.plot3D"></a>

<div class="class_members" markdown="1">

```python
def plot3D(self):
```

<div class="method_docstring" markdown="1">

Uses Mayavi to render a 3D simulation domain. The simulation object must be 3D.
Can also be embedded in Jupyter notebooks.

</div>

</div>


<a id="Simulation.visualize_chunks"></a>

<div class="class_members" markdown="1">

```python
def visualize_chunks(self):
```

<div class="method_docstring" markdown="1">

Displays an interactive image of how the cell is divided into chunks. Each
rectangular region is a chunk, and each color represents a different processor.
Requires [matplotlib](https://matplotlib.org).

</div>

</div>


An animated visualization is also possible via the [Animate2D](#Animate2D) class.

<a id="run-functions"></a>

### Run and Step Functions

The actual work in Meep is performed by `run` functions, which time-step the simulation for a given amount of time or until a given condition is satisfied. These are attributes of the `Simulation` class.

The run functions, in turn, can be modified by use of [step functions](#predefined-step-functions): these are called at every time step and can perform any arbitrary computation on the fields, do outputs and I/O, or even modify the simulation. The step functions can be transformed by many [modifier functions](#step-function-modifiers), like `at_beginning`, `during_sources`, etcetera which cause them to only be called at certain times, etcetera, instead of at every time step.

A common point of confusion is described in [The Run Function Is Not A Loop](The_Run_Function_Is_Not_A_Loop.md). Read this article if you want to make Meep do some customized action on each time step, as many users make the same mistake. What you really want to in that case is to write a step function, as described below.


<a id="Simulation.run"></a>

<div class="class_members" markdown="1">

```python
def run(self, *step_funcs, **kwargs):
def run(step_functions..., until=condition/time):
def run(step_functions..., until_after_sources=condition/time):
```

<div class="method_docstring" markdown="1">

`run(step_functions..., until=condition/time)`

Run the simulation until a certain time or condition, calling the given step
functions (if any) at each timestep. The keyword argument `until` is *either* a
number, in which case it is an additional time (in Meep units) to run for, *or* it
is a function (of no arguments) which returns `True` when the simulation should
stop. `until` can also be a list of stopping conditions which may include a number
of additional functions.

`run(step_functions..., until_after_sources=condition/time)`

Run the simulation until all sources have turned off, calling the given step
functions (if any) at each timestep. The keyword argument `until_after_sources` is
either a number, in which case it is an *additional* time (in Meep units) to run
for after the sources are off, *or* it is a function (of no arguments). In the
latter case, the simulation runs until the sources are off *and* `condition`
returns `True`. Like `until` above, `until_after_sources` can take a list of
stopping conditions.

</div>

</div>


In particular, a useful value for `until_after_sources` or `until` is often `stop_when_fields_decayed`, which is demonstrated in [Tutorial/Basics](Python_Tutorials/Basics.md#transmittance-spectrum-of-a-waveguide-bend). These top-level functions are available:


<a id="stop_when_fields_decayed"></a>

```python
def stop_when_fields_decayed(dt=None, c=None, pt=None, decay_by=None):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
or `until_after_sources` parameter, that examines the component `c` (e.g. `meep.Ex`, etc.)
at the point `pt` (a `Vector3`) and keeps running until its absolute value *squared*
has decayed by at least `decay_by` from its maximum previous value. In particular, it
keeps incrementing the run time by `dt` (in Meep units) and checks the maximum value
over that time period &mdash; in this way, it won't be fooled just because the field
happens to go through zero at some instant.

Note that, if you make `decay_by` very small, you may need to increase the `cutoff`
property of your source(s), to decrease the amplitude of the small high-frequency
components that are excited when the source turns off. High frequencies near the
[Nyquist frequency](https://en.wikipedia.org/wiki/Nyquist_frequency) of the grid have
slow group velocities and are absorbed poorly by [PML](Perfectly_Matched_Layer.md).

</div>


<a id="stop_when_energy_decayed"></a>

```python
def stop_when_energy_decayed(dt=None, decay_by=None):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
or `until_after_sources` parameter, that examines the field energy over the entire
cell volume at every `dt` time units and keeps incrementing the run time by `dt`  until
its absolute value has decayed by at least `decay_by` from its maximum recorded value.

Note that, if you make `decay_by` very small, you may need to increase the `cutoff`
property of your source(s), to decrease the amplitude of the small high-frequency
field components that are excited when the source turns off. High frequencies near the
[Nyquist frequency](https://en.wikipedia.org/wiki/Nyquist_frequency) of the grid have
slow group velocities and are absorbed poorly by [PML](Perfectly_Matched_Layer.md).

</div>


<a id="stop_when_dft_decayed"></a>

```python
def stop_when_dft_decayed(tol=1e-11,
                      minimum_run_time=0,
                      maximum_run_time=None):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
or `until_after_sources` parameter, that checks the `Simulation`'s DFT objects every $t$
timesteps, and stops the simulation once all the field components and frequencies of *every*
DFT object have decayed by at least some tolerance `tol` (default is 1e-11). The time interval
$t$ is determined automatically based on the frequency content in the DFT monitors.
There are two optional parameters: a minimum run time `minimum_run_time` (default: 0) or a
maximum run time `maximum_run_time` (no default).

</div>


<a id="stop_after_walltime"></a>

```python
def stop_after_walltime(t):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
parameter. Stops the simulation after `t` seconds of wall time have passed.

</div>


<a id="stop_on_interrupt"></a>

```python
def stop_on_interrupt():
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
parameter. Instead of terminating when receiving a SIGINT or SIGTERM signal from the
system, the simulation will abort time stepping and continue executing any code that
follows the `run` function (e.g., outputting fields).

</div>


Finally, another run function, useful for computing $\omega(\mathbf{k})$ band diagrams, is available via these `Simulation` methods:


<a id="Simulation.run_k_points"></a>

<div class="class_members" markdown="1">

```python
def run_k_points(self,
                 t: float = None,
                 k_points: List[Union[meep.geom.Vector3, Tuple[float, ...]]] = None):
```

<div class="method_docstring" markdown="1">

Given a list of `Vector3`, `k_points` of *k* vectors, runs a simulation for each
*k* point (i.e. specifying Bloch-periodic boundary conditions) and extracts the
eigen-frequencies, and returns a list of the complex frequencies. In particular,
you should have specified one or more Gaussian sources. It will run the simulation
until the sources are turned off plus an additional $t$ time units. It will run
[Harminv](#harminv) at the same point/component as the first Gaussian source and
look for modes in the union of the frequency ranges for all sources. Returns a
list of lists of frequencies (one list of frequencies for each *k*). Also prints
out a comma-delimited list of frequencies, prefixed by `freqs:`, and their
imaginary parts, prefixed by `freqs-im:`. See [Tutorial/Resonant Modes and
Transmission in a Waveguide
Cavity](Python_Tutorials/Resonant_Modes_and_Transmission_in_a_Waveguide_Cavity.md).

</div>

</div>


<a id="Simulation.run_k_point"></a>

<div class="class_members" markdown="1">

```python
def run_k_point(self,
                t: float = None,
                k: Union[meep.geom.Vector3, Tuple[float, ...]] = None):
```

<div class="method_docstring" markdown="1">

Lower level function called by `run_k_points` that runs a simulation for a single
*k* point `k_point` and returns a `Harminv` instance. Useful when you need to
access more `Harminv` data than just the frequencies.

</div>

</div>



### Predefined Step Functions

Several useful step functions are predefined by Meep. These are available directly via the `meep` package but require a `Simulation` instance as an argument.

#### Output Functions

The most common step function is an output function, which outputs some field component to an [HDF5](https://en.wikipedia.org/wiki/HDF5) file. Normally, you will want to modify this by one of the `at_*` functions, below, as outputting a field at *every* time step can get quite time- and storage-consuming.

Note that although the various field components are stored at different places in the [Yee lattice](Yee_Lattice.md), when they are outputted they are all linearly interpolated to the same grid: to the points at the *centers* of the Yee cells, i.e. $(i+0.5,j+0.5,k+0.5)\cdotΔ$ in 3d.



<a id="Simulation.output_dft"></a>

<div class="class_members" markdown="1">

```python
def output_dft(self,
               dft_fields: meep.simulation.DftFields,
               fname: str):
```

<div class="method_docstring" markdown="1">

Output the Fourier-transformed fields in `dft_fields` (created by
`add_dft_fields`) to an HDF5 file with name `fname` (does *not* include the `.h5`
suffix).

</div>

</div>



<a id="output_epsilon"></a>

```python
def output_epsilon(sim=None, *step_func_args, **kwargs):
```

<div class="function_docstring" markdown="1">

Given a frequency `frequency`, (provided as a keyword argument) output $\varepsilon$ (relative
permittivity); for an anisotropic $\varepsilon$ tensor the output is the [harmonic
mean](https://en.wikipedia.org/wiki/Harmonic_mean) of the $\varepsilon$ eigenvalues. If
`frequency` is non-zero, the output is complex; otherwise it is the real,
frequency-independent part of $\varepsilon$ (the $\omega\to\infty$ limit).
When called as part of a [step function](Python_User_Interface.md#controlling-when-a-step-function-executes),
the `sim` argument specifying the `Simulation` object can be omitted, e.g.,
`sim.run(mp.at_beginning(mp.output_epsilon(frequency=1/0.7)),until=10)`.

</div>


<a id="output_mu"></a>

```python
def output_mu(sim=None, *step_func_args, **kwargs):
```

<div class="function_docstring" markdown="1">

Given a frequency `frequency`, (provided as a keyword argument) output $\mu$ (relative
permeability); for an anisotropic $\mu$ tensor the output is the [harmonic
mean](https://en.wikipedia.org/wiki/Harmonic_mean) of the $\mu$ eigenvalues. If
`frequency` is non-zero, the output is complex; otherwise it is the real,
frequency-independent part of $\mu$ (the $\omega\to\infty$ limit).
When called as part of a [step function](Python_User_Interface.md#controlling-when-a-step-function-executes),
the `sim` argument specifying the `Simulation` object can be omitted, e.g.,
`sim.run(mp.at_beginning(mp.output_mu(frequency=1/0.7)),until=10)`.

</div>


<a id="output_poynting"></a>

```python
def output_poynting(sim):
```

<div class="function_docstring" markdown="1">

Output the Poynting flux $\Re [\mathbf{E}^* \times \mathbf{H}]$. Note that you
might want to wrap this step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_hpwr"></a>

```python
def output_hpwr(sim):
```

<div class="function_docstring" markdown="1">

Output the magnetic-field energy density $\mathbf{H}^* \cdot \mathbf{B} / 2$

</div>


<a id="output_dpwr"></a>

```python
def output_dpwr(sim):
```

<div class="function_docstring" markdown="1">

Output the electric-field energy density $\mathbf{E}^* \cdot \mathbf{D} / 2$

</div>


<a id="output_tot_pwr"></a>

```python
def output_tot_pwr(sim):
```

<div class="function_docstring" markdown="1">

Output the total electric and magnetic energy density. Note that you might want to
wrap this step function in `synchronized_magnetic` to compute it more accurately. See
[Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_png"></a>

```python
def output_png(compnt, options, rm_h5=True):
```

<div class="function_docstring" markdown="1">

Output the given field component (e.g. `Ex`, etc.) as a
[PNG](https://en.wikipedia.org/wiki/PNG) image, by first outputting the HDF5 file,
then converting to PNG via
[h5topng](https://github.com/NanoComp/h5utils/blob/master/README.md), then deleting
the HDF5 file. The second argument is a string giving options to pass to h5topng (e.g.
`"-Zc bluered"`). See also [Tutorial/Basics/Output Tips and
Tricks](Python_Tutorials/Basics.md#output-tips-and-tricks).

It is often useful to use the h5topng `-C` or `-A` options to overlay the dielectric
function when outputting fields. To do this, you need to know the name of the
dielectric-function `.h5` file which must have been previously output by
`output_epsilon`. To make this easier, a built-in shell variable `$EPS` is provided
which refers to the last-output dielectric-function `.h5` file. So, for example
`output_png(mp.Ez,"-C $EPS")` will output the $E_z$ field and overlay the dielectric
contours.

By default, `output_png` deletes the `.h5` file when it is done. To preserve the `.h5`
file requires `output_png(component, h5topng_options, rm_h5=False)`.

</div>



<a id="output_hfield"></a>

```python
def output_hfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *h*, (magnetic) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_hfield_x"></a>

```python
def output_hfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_y"></a>

```python
def output_hfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_z"></a>

```python
def output_hfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_r"></a>

```python
def output_hfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_p"></a>

```python
def output_hfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *h* (magnetic). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>



<a id="output_bfield"></a>

```python
def output_bfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *b*, (magnetic) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_bfield_x"></a>

```python
def output_bfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_y"></a>

```python
def output_bfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_z"></a>

```python
def output_bfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_r"></a>

```python
def output_bfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_p"></a>

```python
def output_bfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *b* (magnetic). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_efield"></a>

```python
def output_efield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *e*, (electric) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_efield_x"></a>

```python
def output_efield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_y"></a>

```python
def output_efield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_z"></a>

```python
def output_efield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_r"></a>

```python
def output_efield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_p"></a>

```python
def output_efield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *e* (electric). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_dfield"></a>

```python
def output_dfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *d*, (displacement) to an HDF5 file. That
is, the different components are stored as different datasets within the *same* file.

</div>


<a id="output_dfield_x"></a>

```python
def output_dfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_y"></a>

```python
def output_dfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_z"></a>

```python
def output_dfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_r"></a>

```python
def output_dfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_p"></a>

```python
def output_dfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_sfield"></a>

```python
def output_sfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *s*, (poynting flux) to an HDF5 file. That
is, the different components are stored as different datasets within the *same* file.
Note that you might want to wrap this step function in `synchronized_magnetic` to
compute it more accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_sfield_x"></a>

```python
def output_sfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_y"></a>

```python
def output_sfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_z"></a>

```python
def output_sfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_r"></a>

```python
def output_sfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_p"></a>

```python
def output_sfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



More generally, it is possible to output an arbitrary function of position and zero or more field components, similar to the `Simulation.integrate_field_function` method, described above. This is done by:


<a id="Simulation.output_field_function"></a>

<div class="class_members" markdown="1">

```python
def output_field_function(self,
                          name,
                          cs,
                          func,
                          real_only=False,
                          h5file=None):
```

<div class="method_docstring" markdown="1">

Output the field function `func` to an HDF5 file in the datasets named `name*.r`
and `name*.i` for the real and imaginary parts. Similar to
`integrate_field_function`, `func` is a function of position (a `Vector3`) and the
field components corresponding to `cs`: a list of `component` constants. If
`real_only` is True, only outputs the real part of `func`.

</div>

</div>


See also [Field Functions](Field_Functions.md), and [Synchronizing the Magnetic and Electric Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md) if you want to do computations combining the electric and magnetic fields.


#### Array Slices

The output functions described above write the data for the fields and materials for the entire cell to an HDF5 file. This is useful for post-processing large datasets which may not fit into memory as you can later read in the HDF5 file to obtain field/material data as a NumPy array. However, in some cases it is convenient to bypass the disk altogether to obtain the data *directly* in the form of a NumPy array without writing/reading HDF5 files. Additionally, you may want the field/material data on just a subregion (or slice) of the entire volume. This functionality is provided by the `get_array` method which takes as input a subregion of the cell and the field/material component. The method returns a NumPy array containing values of the field/material at the current simulation time.


<a id="Simulation.get_array"></a>

<div class="class_members" markdown="1">

```python
def get_array(self,
              component=None,
              vol=None,
              center=None,
              size=None,
              cmplx=None,
              arr=None,
              frequency=0,
              snap=False):
```

<div class="method_docstring" markdown="1">

Takes as input a subregion of the cell and the field/material component. The
method returns a NumPy array containing values of the field/material at the
current simulation time.

**Parameters:**

+ `vol`: `Volume`; the orthogonal subregion/slice of the computational volume. The
  return value of `get_array` has the same dimensions as the `Volume`'s `size`
  attribute. If `None` (default), then a `size` and `center` must be specified.

+ `center`, `size` : `Vector3`; if both are specified, the library will construct
  an appropriate `Volume`. This is a convenience feature and alternative to
  supplying a `Volume`.

+ `component`: field/material component (i.e., `mp.Ex`, `mp.Hy`, `mp.Sz`,
  `mp.Dielectric`, etc). Defaults to `None`.

+ `cmplx`: `boolean`; if `True`, return complex-valued data otherwise return
  real-valued data (default).

+ `arr`: optional parameter to pass a pre-allocated NumPy array of the correct size and
  type (either `numpy.float32` or `numpy.float64` depending on the [floating-point precision
  of the fields and materials](Build_From_Source.md#floating-point-precision-of-the-fields-and-materials-arrays))
  which will be overwritten with the field/material data instead of allocating a
  new array.  Normally, this will be the array returned from a previous call to
  `get_array` for a similar slice, allowing one to re-use `arr` (e.g., when
  fetching the same slice repeatedly at different times).

+ `frequency`: optional frequency point over which the average eigenvalue of the
  $\varepsilon$ and $\mu$ tensors are evaluated. Defaults to 0 which is the
  instantaneous $\varepsilon$.

+ `snap`: By default, the elements of the grid slice are obtained using a bilinear
  interpolation of the nearest Yee grid points. Empty dimensions of the grid slice
  are "collapsed" into a single element. However, if `snap` is set to `True`, this
  interpolation behavior is disabled and the grid slice is instead "snapped"
  everywhere to the nearest grid point. (Empty slice dimensions are still of size
  one.) This feature is mainly useful for comparing results with the
  [`output_` routines](#output-functions) (e.g., `output_epsilon`, `output_efield_z`, etc.).

For convenience, the following wrappers for `get_array` over the entire cell are
available: `get_epsilon()`, `get_mu()`, `get_hpwr()`, `get_dpwr()`,
`get_tot_pwr()`, `get_Xfield()`, `get_Xfield_x()`, `get_Xfield_y()`,
`get_Xfield_z()`, `get_Xfield_r()`, `get_Xfield_p()` where `X` is one of `h`, `b`,
`e`, `d`, or `s`. The routines `get_Xfield_*` all return an array type consistent
with the fields (real or complex). The routines `get_epsilon()` and `get_mu()`
accept the optional argument `frequency` (defaults to 0) and all routines accept
`snap` (defaults to `False`).

**Note on array-slice dimensions:** The routines `get_epsilon`, `get_Xfield_z`,
etc. use as default `size=meep.Simulation.fields.total_volume()` which for
simulations involving Bloch-periodic boundaries (via `k_point`) will result in
arrays that have slightly *different* dimensions than e.g.
`get_array(center=meep.Vector3(), size=cell_size, component=meep.Dielectric`, etc.
(i.e., the slice spans the entire cell volume `cell_size`). Neither of these
approaches is "wrong", they are just slightly different methods of fetching the
boundaries. The key point is that if you pass the same value for the `size`
parameter, or use the default, the slicing routines always give you the same-size
array for all components. You should *not* try to predict the exact size of these
arrays; rather, you should simply rely on Meep's output.

</div>

</div>


<a id="Simulation.get_dft_array"></a>

<div class="class_members" markdown="1">

```python
def get_dft_array(self, dft_obj, component, num_freq):
```

<div class="method_docstring" markdown="1">

Returns the Fourier-transformed fields as a NumPy array. The type is either `numpy.complex64`
or `numpy.complex128` depending on the [floating-point precision of the fields](Build_From_Source.md#floating-point-precision-of-the-fields-and-materials-arrays).

**Parameters:**

+ `dft_obj`: a `dft_flux`, `dft_force`, `dft_fields`, or `dft_near2far` object
  obtained from calling the appropriate `add` function (e.g., `mp.add_flux`).

+ `component`: a field component (e.g., `mp.Ez`).

+ `num_freq`: the index of the frequency. An integer in the range `0...nfreq-1`,
  where `nfreq` is the number of frequencies stored in `dft_obj` as set by the
  `nfreq` parameter to `add_dft_fields`, `add_flux`, etc.

</div>

</div>



#### Array Metadata


<a id="Simulation.get_array_metadata"></a>

<div class="class_members" markdown="1">

```python
def get_array_metadata(self,
                       vol=None,
                       center=None,
                       size=None,
                       dft_cell=None,
                       return_pw=False):
```

<div class="method_docstring" markdown="1">

This routine provides geometric information useful for interpreting the arrays
returned by `get_array` or `get_dft_array` for the spatial region defined by `vol`
or `center`/`size`. In both cases, the return value is a tuple `(x,y,z,w)`, where:

+ `x,y,z` are 1d NumPy arrays storing the $x,y,z$ coordinates of the points in the
  grid slice
+ `w` is a NumPy array of the same dimensions as the array returned by
  `get_array`/`get_dft_array`, whose entries are the weights in a cubature rule
  for integrating over the spatial region (with the points in the cubature rule
  being just the grid points contained in the region). Thus, if $Q(\mathbf{x})$ is
  some spatially-varying quantity whose value at the $n$th grid point is $Q_n$,
  the integral of $Q$ over the region may be approximated by the sum:

$$ \int_{\mathcal V} Q(\mathbf{x})d\mathbf{x} \approx \sum_{n} w_n Q_n.$$

This is a 1-, 2-, or 3-dimensional integral depending on the number of dimensions
in which $\mathcal{V}$ has zero extent. If the $Q_n$ samples are stored in an
array `Q` of the same dimensions as `w`, then evaluating the sum on the RHS is
just one line: `np.sum(w*Q).`

A convenience parameter `dft_cell` is provided as an alternative to `vol` or
`center`/`size`. Set `dft_cell` to a `dft_flux` or `dft_fields` object to define the
region covered by the array. If the `dft_cell` argument is provided then all other
arguments related to the spatial region (`vol`, `center`, and `size`) are ignored.
If no arguments are provided, then the entire cell is used.

For empty dimensions of the grid slice `get_array_metadata` will collapse
the *two* elements corresponding to the nearest Yee grid points into a *single*
element using linear interpolation.

If `return_pw=True`, the return value is a 2-tuple `(p,w)` where `p` (points) is a
list of `mp.Vector3`s with the same dimensions as `w` (weights). Otherwise, by
default the return value is a 4-tuple `(x,y,z,w)`.

</div>

</div>


The following are some examples of how array metadata can be used.

**Labeling Axes in Plots of Grid Quantities**

```python
# using the geometry from the bend-flux tutorial example
import matplotlib.pyplot as plt
import numpy as np

eps_array=sim.get_epsilon()
(x,y,z,w)=sim.get_array_metadata()
plt.figure()
ax = plt.subplot(111)
plt.pcolormesh(x,y,np.transpose(eps_array),shading='gouraud')
ax.set_aspect('equal')
plt.show()
```

![](images/PermittivityWithLabeledAxes.png#center)

**Computing Quantities Defined by Integrals of Field-Dependent Functions Over Grid Regions**

+ energy stored in the $\mathbf{E}$-field in a region $\mathcal{V}$:
      $$ \mathcal{E}=
         \frac{1}{2}\int_{\mathcal V} \epsilon |\mathbf{E}|^2\,dV
      $$

+ Poynting flux through a surface $\mathcal{S}$:
      $$\mathcal{S}=\frac{1}{2}\text{Re }\int_{\mathcal S}
        \Big(\mathbf{E}^*\times \mathbf{H}\Big)\times d\mathbf{A}
      $$

```python
  import numpy as np

  # E-field modal volume in box from time-domain fields
  box            = mp.Volume(center=box_center, size=box_size)
  (Ex,Ey,Ez)     = [sim.get_array(vol=box, component=c, cmplx=True) for c in [mp.Ex, mp.Ey, mp.Ez]]
  eps            = sim.get_array(vol=box, component=mp.Dielectric)
  (x,y,z,w)      = sim.get_array_metadata(vol=box)
  energy_density = np.real(eps*(np.conj(Ex)*Ex + np.conj(Ey)*Ey + np.conj(Ez)*Ez)) # array
  energy         = np.sum(w*energy_density)                                        # scalar

  # x-directed Poynting flux through monitor from frequency-domain fields
  monitor        = mp.FluxRegion(center=mon_center, size=mon_size)
  dft_cell       = sim.add_flux(freq, 0, 1, monitor)
  sim.run(...)    # timestep until DFTs converged
  (Ey,Ez,Hy,Hz)  = [sim.get_dft_array(dft_cell,c,0) for c in [mp.Ey, mp.Ez, mp.Hy, mp.Hz]]
  (x,y,z,w)      = sim.get_array_metadata(dft=dft_cell)
  flux_density   = np.real( np.conj(Ey)*Hz - np.conj(Ez)*Hy )    # array
  flux           = np.sum(w*flux_density)                        # scalar
```

#### Source Slices


<a id="Simulation.get_source"></a>

<div class="class_members" markdown="1">

```python
def get_source(self,
               component,
               vol=None,
               center=None,
               size=None):
```

<div class="method_docstring" markdown="1">

Return an array of complex values of the [source](#source) amplitude for
`component` over the given `vol` or `center`/`size`. The array has the same
dimensions as that returned by [`get_array`](#array-slices).
Not supported for [cylindrical coordinates](Python_Tutorials/Cylindrical_Coordinates.md).

</div>

</div>



#### Harminv Step Function

The following step function collects field data from a given point and runs [Harminv](https://github.com/NanoComp/harminv) on that data to extract the frequencies, decay rates, and other information.

* [Harminv class](#Harminv)


### Step-Function Modifiers

Rather than writing a brand-new step function every time something a bit different is required, the following "modifier" functions take a bunch of step functions and produce *new* step functions with modified behavior. See also [Tutorial/Basics](Python_Tutorials/Basics.md) for examples.


#### Miscellaneous Step-Function Modifiers


<a id="combine_step_funcs"></a>

```python
def combine_step_funcs(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, return a new step function that on each step calls
all of the passed step functions.

</div>


<a id="synchronized_magnetic"></a>

```python
def synchronized_magnetic(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, return a new step function that on each step calls
all of the passed step functions with the magnetic field synchronized in time with the
electric field. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



#### Controlling When a Step Function Executes


<a id="when_true"></a>

```python
def when_true(cond, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions and a condition function `condition` (a function of
no arguments), evaluate the step functions whenever `condition` returns `True`.

</div>


<a id="when_false"></a>

```python
def when_false(cond, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions and a condition function `condition` (a function of
no arguments), evaluate the step functions whenever `condition` returns `False`.

</div>


<a id="at_every"></a>

```python
def at_every(dt, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them at every time interval of $dT$ units
(rounded up to the next time step).

</div>


<a id="after_time"></a>

```python
def after_time(t, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only for times after a $T$ time
units have elapsed from the start of the run.

</div>


<a id="before_time"></a>

```python
def before_time(t, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only for times before a $T$ time
units have elapsed from the start of the run.

</div>


<a id="at_time"></a>

```python
def at_time(t, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only once, after a $T$ time units
have elapsed from the start of the run.

</div>


<a id="after_sources"></a>

```python
def after_sources(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only for times after all of the
sources have turned off.

</div>


<a id="after_sources_and_time"></a>

```python
def after_sources_and_time(t, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only for times after all of the
sources have turned off, plus an additional $T$ time units have elapsed.

</div>


<a id="during_sources"></a>

```python
def during_sources(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only for times *before* all of the
sources have turned off.

</div>


<a id="at_beginning"></a>

```python
def at_beginning(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only once, at the beginning of the
run.

</div>


<a id="at_end"></a>

```python
def at_end(*step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, evaluates them only once, at the end of the run.

</div>



#### Modifying HDF5 Output


<a id="in_volume"></a>

```python
def in_volume(v, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, modifies any output functions among them to only
output a subset (or a superset) of the cell, corresponding to the `meep::volume* v`
(created by the `Volume` function).

</div>


<a id="in_point"></a>

```python
def in_point(pt, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, modifies any output functions among them to only
output a single *point* of data, at `pt` (a `Vector3`).

</div>


<a id="to_appended"></a>

```python
def to_appended(fname, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, modifies any output functions among them to
*append* their data to datasets in a single newly-created file named `filename` (plus
an `.h5` suffix and the current filename prefix). They append by adding an *extra
dimension* to their datasets, corresponding to time.

</div>


<a id="with_prefix"></a>

```python
def with_prefix(pre, *step_funcs):
```

<div class="function_docstring" markdown="1">

Given zero or more step functions, modifies any output functions among them to prepend
the string `prefix` to the file names (much like `filename_prefix`, above).

</div>


### Writing Your Own Step Functions

A step function can take two forms. The simplest is just a function with one argument (the simulation instance), which is called at every time step unless modified by one of the modifier functions above. e.g.

```py
def my_step(sim):
    print("Hello world!")
```

If one then does `sim.run(my_step, until=100)`, Meep will run for 100 time units and print "Hello world!" at every time step.

This suffices for most purposes. However, sometimes you need a step function that opens a file, or accumulates some computation, and you need to clean up (e.g. close the file or print the results) at the end of the run. For this case, you can write a step function of two arguments: the second argument will either be `step` when it is called during time-stepping, or `finish` when it is called at the end of the run:

```py
def my_step(sim, todo):
    if todo == 'step':
       # do something
    elif todo == 'finish':
       # do something else

    # access simulation attributes
    sim.fields ...etc.
```

Low-Level Functions
-------------------

By default, Meep initializes C++ objects like `meep::structure` and `meep::fields` in the `Simulation` object based on attributes like `sources` and `geometry`. Theses objects are then accessible via `simulation_instance.structure` and `simulation_instance.fields`. Given these, you can then call essentially any function in the C++ interface, because all of the C++ functions are automatically made accessible to Python by the wrapper-generator program [SWIG](https://en.wikipedia.org/wiki/SWIG).

### Initializing the Structure and Fields

The `structure` and `fields` variables are automatically initialized when any of the run functions is called, or by various other functions such as `add_flux`. To initialize them separately, you can call `Simulation.init_sim()` manually, or `Simulation._init_structure(k_point)` to just initialize the structure.

If you want to time step more than one field simultaneously, the easiest way is probably to do something like:

```py
sim = Simulation(cell_size, resolution).init_sim()
my_fields = sim.fields
sim.fields = None
sim.reset_meep()
```

and then change the geometry etc. and re-run `sim.init_sim()`. Then you'll have two field objects in memory.

### SWIG Wrappers

If you look at a function in the C++ interface, then there are a few simple rules to infer the name of the corresponding Python function.

-   First, all functions in the `meep::` namespace are available in the Meep Python module from the top-level `meep` package.
-   Second, any method of a class is accessible via the standard Python class interface. For example, `meep::fields::step`, which is the function that performs a time-step, is exposed to Python as `fields_instance.step()` where a fields instance is usually accessible from Simulation.fields.
-   C++ constructors are called using the normal Python class instantiation. E.g., `fields = mp.fields(...)` returns a new `meep::fields` object. Calling destructors is not necessary because objects are automatically garbage collected.

Some argument type conversion is performed automatically, e.g. types like complex numbers are converted to `complex<double>`, etcetera. `Vector3` vectors are converted to `meep::vec`, but to do this it is necessary to know the dimensionality of the problem in C++. The problem dimensions are automatically initialized by `Simulation._init_structure`, but if you want to pass vector arguments to C++ before that time you should call `Simulation.require_dimensions()`, which infers the dimensions from the `cell_size`, `k_point`, and `dimensions` variables.



<a id="classes"></a>

Class Reference
---------------

Classes are complex datatypes with various properties which may have default values. Classes can be "subclasses" of other classes. Subclasses inherit all the properties of their superclass and can be used in any place the superclass is expected.

The `meep` package defines several types of classes. The most important of these is the `Simulation` class. Classes which are available directly from the `meep` package are constructed with:

```py
mp.ClassName(prop1=val1, prop2=val2, ...)
```

The most numerous are the geometric object classes which are the same as those used in [MPB](https://mpb.readthedocs.io). You can get a list of the available classes (and constants) in the Python interpreter with:

```py
import meep
[x for x in dir(meep) if x[0].isupper()]
```

More information, including their property types and default values, is available with the standard python `help` function: `help(mp.ClassName)`.

The following classes are available directly via the `meep` package.


---
<a id="Medium"></a>

### Medium

```python
class Medium(object):
```

<div class="class_docstring" markdown="1">

This class is used to specify the materials that geometric objects are made of. It
represents an electromagnetic medium which is possibly nonlinear and/or dispersive.
See also [Materials](Materials.md). To model a perfectly-conducting metal, use the
predefined `metal` object, above. To model imperfect conductors, use a dispersive
dielectric material. See also the [Predefined Variables](#predefined-variables):
`metal`, `perfect_electric_conductor`, and `perfect_magnetic_conductor`.

**Material Function**

Any function that accepts a `Medium` instance can also accept a user-defined Python
function. This allows you to specify the material as an arbitrary function of
position. The function must have one argument, the position `Vector3`, and return the
material at that point, which should be a Python `Medium` instance. This is
accomplished by passing a function to the `material_function` keyword argument in the
`Simulation` constructor, or the `material` keyword argument in any `GeometricObject`
constructor. For an example, see [Subpixel Smoothing/Enabling Averaging for Material
Function](Subpixel_Smoothing.md#enabling-averaging-for-material-function).

Instead of the `material` or `material_function` arguments, you can also use the
`epsilon_func` keyword argument to `Simulation` and `GeometricObject`, which takes a
function of position that returns the dielectric constant at that point.

**Important:** If your material function returns nonlinear, dispersive (Lorentzian or
conducting), or magnetic materials, you should also include a list of these materials
in the `extra_materials` input variable (above) to let Meep know that it needs to
support these material types in your simulation. For dispersive materials, you need to
include a material with the *same* values of $\gamma_n$ and $\omega_n$, so
you can only have a finite number of these, whereas $\sigma_n$ can vary
continuously and a matching $\sigma_n$ need not be specified in
`extra_materials`. For nonlinear or conductivity materials, your `extra_materials`
list need not match the actual values of $\sigma$ or $\chi$ returned by your material function,
which can vary continuously.

**Complex $\varepsilon$ and $\mu$**: you cannot specify a
frequency-independent complex $\varepsilon$ or $\mu$ in Meep where
the imaginary part is a frequency-independent loss but there is an
alternative.  That is because there are only two important
physical situations. First, if you only care about the loss in a
narrow bandwidth around some frequency, you can set the loss at
that frequency via the
[conductivity](Materials.md#conductivity-and-complex).  Second, if
you care about a broad bandwidth, then all physical materials have
a frequency-dependent complex $\varepsilon$ and/or $\mu$, and you
need to specify that frequency dependence by fitting to Lorentzian
and/or Drude resonances via the `LorentzianSusceptibility` or
`DrudeSusceptibility` classes below.

Dispersive dielectric and magnetic materials, above, are specified via a list of
objects that are subclasses of type `Susceptibility`.

</div>


<a id="Medium.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             epsilon_diag=Vector3<1.0, 1.0, 1.0>,
             epsilon_offdiag=Vector3<0.0, 0.0, 0.0>,
             mu_diag=Vector3<1.0, 1.0, 1.0>,
             mu_offdiag=Vector3<0.0, 0.0, 0.0>,
             E_susceptibilities=None,
             H_susceptibilities=None,
             E_chi2_diag=Vector3<0.0, 0.0, 0.0>,
             E_chi3_diag=Vector3<0.0, 0.0, 0.0>,
             H_chi2_diag=Vector3<0.0, 0.0, 0.0>,
             H_chi3_diag=Vector3<0.0, 0.0, 0.0>,
             D_conductivity_diag=Vector3<0.0, 0.0, 0.0>,
             D_conductivity_offdiag=Vector3<0.0, 0.0, 0.0>,
             B_conductivity_diag=Vector3<0.0, 0.0, 0.0>,
             B_conductivity_offdiag=Vector3<0.0, 0.0, 0.0>,
             epsilon=None,
             index=None,
             mu=None,
             chi2=None,
             chi3=None,
             D_conductivity=None,
             B_conductivity=None,
             E_chi2=None,
             E_chi3=None,
             H_chi2=None,
             H_chi3=None,
             valid_freq_range=FreqRange(min=-1e+20, max=1e+20)):
```

<div class="method_docstring" markdown="1">

Creates a `Medium` object.

+ **`epsilon` [`number`]** The frequency-independent isotropic relative
  permittivity or dielectric constant. Default is 1. You can also use `index=n` as
  a synonym for `epsilon=n*n`; note that this is not really the refractive index
  if you also specify μ, since the true index is $\sqrt{\mu\varepsilon}$. Using
  `epsilon=ep` is actually a synonym for `epsilon_diag=mp.Vector3(ep, ep, ep)`.

+ **`epsilon_diag` and `epsilon_offdiag` [`Vector3`]** — These properties allow
  you to specify ε as an arbitrary real-symmetric tensor by giving the diagonal
  and offdiagonal parts. Specifying `epsilon_diag=Vector3(a, b, c)` and/or
  `epsilon_offdiag=Vector3(u, v, w)` corresponds to a relative permittivity ε
  tensor \begin{pmatrix} a & u & v \\ u & b & w \\ v & w & c \end{pmatrix}
  Default is the identity matrix ($a = b = c = 1$ and $u = v = w = 0$).

+ **`mu` [`number`]** — The frequency-independent isotropic relative permeability
  μ. Default is 1. Using `mu=pm` is actually a synonym for `mu_diag=mp.Vector3(pm,
  pm, pm)`.

+ **`mu_diag` and `mu_offdiag` [`Vector3`]** — These properties allow you to
  specify μ as an arbitrary real-symmetric tensor by giving the diagonal and
  offdiagonal parts exactly as for ε above. Default is the identity matrix.

+ **`D_conductivity` [`number`]** — The frequency-independent electric
  conductivity $\sigma_D$. Default is 0. You can also specify a diagonal
  anisotropic conductivity tensor by using the property `D_conductivity_diag`
  which takes a `Vector3` to give the $\sigma_D$ tensor diagonal. See also
  [Conductivity](Materials.md#conductivity-and-complex).

+ **`B_conductivity` [`number`]** — The frequency-independent magnetic
  conductivity $\sigma_B$. Default is 0. You can also specify a diagonal
  anisotropic conductivity tensor by using the property `B_conductivity_diag`
  which takes a `Vector3` to give the $\sigma_B$ tensor diagonal. See also
  [Conductivity](Materials.md#conductivity-and-complex).

+ **`chi2` [`number`]** — The nonlinear electric
  [Pockels](https://en.wikipedia.org/wiki/Pockels_effect) susceptibility
  $\chi^{(2)}$ (quadratic nonlinearity). Default is 0. See also [Nonlinearity](Materials.md#nonlinearity).
  This is equivalent to setting `E_chi2`; alternatively, an analogous magnetic
  nonlinearity can be specified using `H_chi2`. These are isotropic nonlinearities,
  but *diagonal* anisotropic polarizations of the form $\chi_i^{(2)} E_i^2$ can
  be specified with `E_chi2_diag` (which defaults to `[E_chi2,E_chi2,E_chi2]`).

+ **`chi3` [`number`]** — The nonlinear electric
  [Kerr](https://en.wikipedia.org/wiki/Kerr_effect) susceptibility $\chi^{(3)}$
  (cubic nonlinearity). Default is 0. See also [Nonlinearity](Materials.md#nonlinearity).
  This is equivalent to setting `E_chi3`; alternatively, an analogous magnetic nonlinearity
  can be specified using `H_chi3`. These are isotropic nonlinearities, but *diagonal*
  anisotropic polarizations of the form $\chi_i^{(3)} |E|^2 E_i$ can be specified with
  `E_chi3_diag` (which defaults to `[E_chi3,E_chi3,E_chi3]`).

+ **`E_susceptibilities` [ list of `Susceptibility` class ]** — List of dispersive
  susceptibilities (see below) added to the dielectric constant ε in order to
  model material dispersion. Defaults to none (empty list). See also [Material
  Dispersion](Materials.md#material-dispersion).

+ **`H_susceptibilities` [ list of `Susceptibility` class ]** — List of dispersive
  susceptibilities (see below) added to the permeability μ in order to model
  material dispersion. Defaults to none (empty list). See also [Material
  Dispersion](Materials.md#material-dispersion).

</div>

</div>


<a id="Medium.__repr__"></a>

<div class="class_members" markdown="1">

```python
def __repr__(self):
```

<div class="method_docstring" markdown="1">

Return repr(self).

</div>

</div>


<a id="Medium.epsilon"></a>

<div class="class_members" markdown="1">

```python
def epsilon(self, freq):
```

<div class="method_docstring" markdown="1">

Returns the medium's permittivity tensor as a 3x3 Numpy array at the specified
frequency `freq` which can be either a scalar, list, or Numpy array. In the case
of a list/array of N frequency points, a Numpy array of size Nx3x3 is returned.

</div>

</div>


<a id="Medium.mu"></a>

<div class="class_members" markdown="1">

```python
def mu(self, freq):
```

<div class="method_docstring" markdown="1">

Returns the medium's permeability tensor as a 3x3 Numpy array at the specified
frequency `freq` which can be either a scalar, list, or Numpy array. In the case
of a list/array of N frequency points, a Numpy array of size Nx3x3 is returned.

</div>

</div>


<a id="Medium.transform"></a>

<div class="class_members" markdown="1">

```python
def transform(self, m):
```

<div class="method_docstring" markdown="1">

Transforms `epsilon`, `mu`, and `sigma` of any [susceptibilities](#susceptibility)
by the 3×3 matrix `m`. If `m` is a [rotation
matrix](https://en.wikipedia.org/wiki/Rotation_matrix), then the principal axes of
the susceptibilities are rotated by `m`.  More generally, the susceptibilities χ
are transformed to MχMᵀ/|det M|, which corresponds to [transformation
optics](http://math.mit.edu/~stevenj/18.369/coordinate-transform.pdf) for an
arbitrary curvilinear coordinate transformation with Jacobian matrix M. The
absolute value of the determinant is to prevent inadvertent construction of
left-handed materials, which are [problematic in nondispersive
media](FAQ.md#why-does-my-simulation-diverge-if-0).

</div>

</div>


---
<a id="MaterialGrid"></a>

### MaterialGrid

```python
class MaterialGrid(object):
```

<div class="class_docstring" markdown="1">

This class is used to specify materials on a rectilinear grid. A class object is passed
as the `material` argument of a [`Block`](#block) geometric object or the `default_material`
argument of the [`Simulation`](#Simulation) constructor (similar to a [material function](#medium)).

</div>


<a id="MaterialGrid.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             grid_size,
             medium1,
             medium2,
             weights=None,
             grid_type='U_DEFAULT',
             do_averaging=True,
             beta=0,
             eta=0.5,
             damping=0):
```

<div class="method_docstring" markdown="1">

Creates a `MaterialGrid` object.

The input are two materials `medium1` and `medium2` along with a weight function $u(x)$ which
is defined on a rectilinear grid by the NumPy array `weights` of size `grid_size` (a 3-tuple or
`Vector3` of integers $N_x$,$N_y$,$N_z$). The resolution of the grid may be nonuniform depending
on the `size` property of the `Block` object as shown in the following example for a 2d `MaterialGrid`
with $N_x=5$ and $N_y=4$. $N_z=0$ implies that the `MaterialGrid` is extruded in the $z$ direction.
The grid points are defined at the corners of the voxels.

![](images/material_grid.png#center)

Elements of the `weights` array must be in the range [0,1] where 0 is `medium1` and 1 is `medium2`.
The `weights` array is used to define a linear interpolation from `medium1` to `medium2`.
Two material types are supported: (1) frequency-independent isotropic $\varepsilon$ (`epsilon_diag`
and `epsilon_offdiag` are interpolated) and (2) `LorentzianSusceptibility` (`sigma` and `sigma_offdiag`
are interpolated). `medium1` and `medium2` must both be the same type. The materials are
[bilinearly interpolated](https://en.wikipedia.org/wiki/Bilinear_interpolation) from the rectilinear
grid to Meep's [Yee grid](Yee_Lattice.md).

For improving accuracy, [subpixel smoothing](Subpixel_Smoothing.md) can be enabled by specifying
`do_averaging=True`. If you want to use a material grid to define a (nearly) discontinuous,
piecewise-constant material that is *either* `medium1` or `medium2` almost everywhere, you can
optionally enable a (smoothed) *projection* feature by setting the parameter `beta` to a
positive value. When the projection feature is enabled, the weights $u(x)$ can be thought of as a
[level-set function](https://en.wikipedia.org/wiki/Level-set_method) defining an interface at
$u(x)=\eta$ with a smoothing factor $\beta$ where $\beta=+\infty$ gives an unsmoothed,
discontinuous interface. The projection operator is $(\tanh(\beta\times\eta)
+\tanh(\beta\times(u-\eta)))/(\tanh(\beta\times\eta)+\tanh(\beta\times(1-\eta)))$
involving the parameters `beta` ($\beta$: bias or "smoothness" of the turn on) and `eta`
($\eta$: offset for erosion/dilation). The level set provides a general approach for defining
a *discontinuous* function from otherwise continuously varying (via the bilinear interpolation)
grid values. Subpixel smoothing is fast and accurate because it exploits an analytic formulation
for level-set functions.

A nonzero `damping` term creates an artificial conductivity $\sigma = u(1-u)*$`damping`, which acts as
dissipation loss that penalizes intermediate pixel values of non-binarized structures. The value of
`damping` should be proportional to $2\pi$ times the typical frequency of the problem.

It is possible to overlap any number of different `MaterialGrid`s. This can be useful for defining
grids which are symmetric (e.g., mirror, rotation). One way to set this up is by overlapping a
given `MaterialGrid` object with a symmetrized copy of itself. In the case of spatially overlapping
`MaterialGrid` objects (with no intervening objects), any overlapping points are computed using the
method `grid_type` which is one of `"U_MIN"` (minimum of the overlapping grid values), `"U_PROD"`
(product), `"U_MEAN"` (mean), `"U_DEFAULT"` (topmost material grid). In general, these `"U_*"` options
allow you to combine any material grids that overlap in space with no intervening objects.

</div>

</div>


<a id="MaterialGrid.update_weights"></a>

<div class="class_members" markdown="1">

```python
def update_weights(self, x):
```

<div class="method_docstring" markdown="1">

Reset the `weights` to `x`.

</div>

</div>


---
<a id="Susceptibility"></a>

### Susceptibility

```python
class Susceptibility(object):
```

<div class="class_docstring" markdown="1">

Parent class for various dispersive susceptibility terms, parameterized by an
anisotropic amplitude $\sigma$. See [Material Dispersion](Materials.md#material-dispersion).

</div>


<a id="Susceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             sigma_diag=Vector3<0.0, 0.0, 0.0>,
             sigma_offdiag=Vector3<0.0, 0.0, 0.0>,
             sigma=None):
```

<div class="method_docstring" markdown="1">

+ **`sigma` [`number`]** — The scale factor $\sigma$.

You can also specify an anisotropic $\sigma$ tensor by using the property `sigma_diag`
which takes three numbers or a `Vector3` to give the $\sigma_n$ tensor diagonal, and
`sigma_offdiag` which specifies the offdiagonal elements (defaults to 0). That is,
`sigma_diag=mp.Vector3(a, b, c)` and `sigma_offdiag=mp.Vector3(u, v, w)`
corresponds to a $\sigma$ tensor

\begin{pmatrix} a & u & v \\ u & b & w \\ v & w & c \end{pmatrix}

</div>

</div>


---
<a id="LorentzianSusceptibility"></a>

### LorentzianSusceptibility

```python
class LorentzianSusceptibility(Susceptibility):
```

<div class="class_docstring" markdown="1">

Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
oscillator) form. See [Material Dispersion](Materials.md#material-dispersion), with
the parameters (in addition to $\sigma$):

</div>


<a id="LorentzianSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, frequency=0.0, gamma=0.0, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`frequency` [`number`]** — The resonance frequency $f_n = \omega_n / 2\pi$.

+ **`gamma` [`number`]** — The resonance loss rate $\gamma_n / 2\pi$.

Note: multiple objects with identical values for the `frequency` and `gamma` but
different `sigma` will appear as a *single* Lorentzian susceptibility term in the
preliminary simulation info output.

</div>

</div>


---
<a id="DrudeSusceptibility"></a>

### DrudeSusceptibility

```python
class DrudeSusceptibility(Susceptibility):
```

<div class="class_docstring" markdown="1">

Specifies a single dispersive susceptibility of Drude form. See [Material
Dispersion](Materials.md#material-dispersion), with the parameters (in addition to $\sigma$):

</div>


<a id="DrudeSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, frequency=0.0, gamma=0.0, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`frequency` [`number`]** — The frequency scale factor $f_n = \omega_n / 2\pi$
  which multiplies $\sigma$ (not a resonance frequency).

+ **`gamma` [`number`]** — The loss rate $\gamma_n / 2\pi$.

</div>

</div>


---
<a id="MultilevelAtom"></a>

### MultilevelAtom

```python
class MultilevelAtom(Susceptibility):
```

<div class="class_docstring" markdown="1">

Specifies a multievel atomic susceptibility for modeling saturable gain and
absorption. This is a subclass of `E_susceptibilities` which contains two objects: (1)
`transitions`: a list of atomic `Transition`s (defined below), and (2)
`initial_populations`: a list of numbers defining the initial population of each
atomic level. See [Materials/Saturable Gain and
Absorption](Materials.md#saturable-gain-and-absorption).

</div>


<a id="MultilevelAtom.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             initial_populations=None,
             transitions=None,
             **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`sigma` [`number`]** — The scale factor $\sigma$.

You can also specify an anisotropic $\sigma$ tensor by using the property `sigma_diag`
which takes three numbers or a `Vector3` to give the $\sigma_n$ tensor diagonal, and
`sigma_offdiag` which specifies the offdiagonal elements (defaults to 0). That is,
`sigma_diag=mp.Vector3(a, b, c)` and `sigma_offdiag=mp.Vector3(u, v, w)`
corresponds to a $\sigma$ tensor

\begin{pmatrix} a & u & v \\ u & b & w \\ v & w & c \end{pmatrix}

</div>

</div>


---
<a id="Transition"></a>

### Transition

```python
class Transition(object):
```

<div class="class_docstring" markdown="1">



</div>


<a id="Transition.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             from_level,
             to_level,
             transition_rate=0,
             frequency=0,
             sigma_diag=Vector3<1.0, 1.0, 1.0>,
             gamma=0,
             pumping_rate=0):
```

<div class="method_docstring" markdown="1">

Construct a `Transition`.

+ **`frequency` [`number`]** — The radiative transition frequency $f = \omega / 2\pi$.

+ **`gamma` [`number`]** — The loss rate $\gamma = \gamma / 2\pi$.

+ **`sigma_diag` [`Vector3`]** — The per-polarization coupling strength $\sigma$.

+ **`from_level` [`number`]** — The atomic level from which the transition occurs.

+ **`to_level` [`number`]** — The atomic level to which the transition occurs.

+ **`transition_rate` [`number`]** — The non-radiative transition rate
  $f = \omega / 2\pi$. Default is 0.

+ **`pumping_rate` [`number`]** — The pumping rate $f = \omega / 2\pi$. Default is 0.

</div>

</div>


---
<a id="NoisyLorentzianSusceptibility"></a>

### NoisyLorentzianSusceptibility

```python
class NoisyLorentzianSusceptibility(LorentzianSusceptibility):
```

<div class="class_docstring" markdown="1">

Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
oscillator) or Drude form. See [Material
Dispersion](Materials.md#material-dispersion), with the same `sigma`, `frequency`, and
`gamma` parameters, but with an additional Gaussian random noise term (uncorrelated in
space and time, zero mean) added to the **P** damped-oscillator equation.

</div>


<a id="NoisyLorentzianSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, noise_amp=0.0, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`noise_amp` [`number`]** — The noise has root-mean square amplitude σ $\times$
  `noise_amp`.

This is a somewhat unusual polarizable medium, a Lorentzian susceptibility with a
random noise term added into the damped-oscillator equation at each point. This
can be used to directly model thermal radiation in both the [far
field](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.213905) and the
[near field](http://math.mit.edu/~stevenj/papers/RodriguezIl11.pdf). Note, however
that it is more efficient to [compute far-field thermal radiation using
Kirchhoff's law](http://www.simpetus.com/projects.html#meep_thermal_radiation) of
radiation, which states that emissivity equals absorptivity. Near-field thermal
radiation can usually be computed more efficiently using frequency-domain methods,
e.g. via [SCUFF-EM](https://github.com/HomerReid/scuff-em), as described e.g.
[here](http://doi.org/10.1103/PhysRevB.92.134202) or
[here](http://doi.org/10.1103/PhysRevB.88.054305).

</div>

</div>


---
<a id="NoisyDrudeSusceptibility"></a>

### NoisyDrudeSusceptibility

```python
class NoisyDrudeSusceptibility(DrudeSusceptibility):
```

<div class="class_docstring" markdown="1">

Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
oscillator) or Drude form. See [Material
Dispersion](Materials.md#material-dispersion), with the same `sigma`, `frequency`, and
`gamma` parameters, but with an additional Gaussian random noise term (uncorrelated in
space and time, zero mean) added to the **P** damped-oscillator equation.

</div>


<a id="NoisyDrudeSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, noise_amp=0.0, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`noise_amp` [`number`]** — The noise has root-mean square amplitude σ $\times$
  `noise_amp`.

This is a somewhat unusual polarizable medium, a Lorentzian susceptibility with a
random noise term added into the damped-oscillator equation at each point. This
can be used to directly model thermal radiation in both the [far
field](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.213905) and the
[near field](http://math.mit.edu/~stevenj/papers/RodriguezIl11.pdf). Note, however
that it is more efficient to [compute far-field thermal radiation using
Kirchhoff's law](http://www.simpetus.com/projects.html#meep_thermal_radiation) of
radiation, which states that emissivity equals absorptivity. Near-field thermal
radiation can usually be computed more efficiently using frequency-domain methods,
e.g. via [SCUFF-EM](https://github.com/HomerReid/scuff-em), as described e.g.
[here](http://doi.org/10.1103/PhysRevB.92.134202) or
[here](http://doi.org/10.1103/PhysRevB.88.054305).

</div>

</div>


---
<a id="GyrotropicLorentzianSusceptibility"></a>

### GyrotropicLorentzianSusceptibility

```python
class GyrotropicLorentzianSusceptibility(LorentzianSusceptibility):
```

<div class="class_docstring" markdown="1">

(**Experimental feature**) Specifies a single dispersive [gyrotropic
susceptibility](Materials.md#gyrotropic-media) of [Lorentzian (damped harmonic
oscillator) or Drude form](Materials.md#gyrotropic-drude-lorentz-model). Its
parameters are `sigma`, `frequency`, and `gamma`, which have the [usual
meanings](#susceptibility), and an additional 3-vector `bias`:

</div>


<a id="GyrotropicLorentzianSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, bias=Vector3<0.0, 0.0, 0.0>, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`bias` [`Vector3`]** — The gyrotropy vector.  Its direction determines the
orientation of the gyrotropic response, and the magnitude is the precession
frequency $|\mathbf{b}_n|/2\pi$.

</div>

</div>


---
<a id="GyrotropicDrudeSusceptibility"></a>

### GyrotropicDrudeSusceptibility

```python
class GyrotropicDrudeSusceptibility(DrudeSusceptibility):
```

<div class="class_docstring" markdown="1">

(**Experimental feature**) Specifies a single dispersive [gyrotropic
susceptibility](Materials.md#gyrotropic-media) of [Lorentzian (damped harmonic
oscillator) or Drude form](Materials.md#gyrotropic-drude-lorentz-model). Its
parameters are `sigma`, `frequency`, and `gamma`, which have the [usual
meanings](#susceptibility), and an additional 3-vector `bias`:

</div>


<a id="GyrotropicDrudeSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, bias=Vector3<0.0, 0.0, 0.0>, **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`bias` [`Vector3`]** — The gyrotropy vector.  Its direction determines the
orientation of the gyrotropic response, and the magnitude is the precession
frequency $|\mathbf{b}_n|/2\pi$.

</div>

</div>


---
<a id="GyrotropicSaturatedSusceptibility"></a>

### GyrotropicSaturatedSusceptibility

```python
class GyrotropicSaturatedSusceptibility(Susceptibility):
```

<div class="class_docstring" markdown="1">

(**Experimental feature**) Specifies a single dispersive [gyrotropic
susceptibility](Materials.md#gyrotropic-media) governed by a [linearized
Landau-Lifshitz-Gilbert
equation](Materials.md#gyrotropic-saturated-dipole-linearized-landau-lifshitz-gilbert-model).
This class takes parameters `sigma`, `frequency`, and `gamma`, whose meanings are
different from the Lorentzian and Drude case. It also takes a 3-vector `bias`
parameter and an `alpha` parameter:

</div>


<a id="GyrotropicSaturatedSusceptibility.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             bias=Vector3<0.0, 0.0, 0.0>,
             frequency=0.0,
             gamma=0.0,
             alpha=0.0,
             **kwargs):
```

<div class="method_docstring" markdown="1">

+ **`sigma` [`number`]** — The coupling factor $\sigma_n / 2\pi$ between the
  polarization and the driving field. In [magnetic
  ferrites](https://en.wikipedia.org/wiki/Ferrite_(magnet)), this is the Larmor
  precession frequency at the saturation field.

+ **`frequency` [`number`]** — The [Larmor
  precession](https://en.wikipedia.org/wiki/Larmor_precession) frequency,
  $f_n = \omega_n / 2\pi$.

+ **`gamma` [`number`]** — The loss rate $\gamma_n / 2\pi$ in the off-diagonal
  response.

+ **`alpha` [`number`]** — The loss factor $\alpha_n$ in the diagonal response.
  Note that this parameter is dimensionless and contains no 2Ï€ factor.

+ **`bias` [`Vector3`]** — Vector specifying the orientation of the gyrotropic
  response. Unlike the similarly-named `bias` parameter for the [gyrotropic
  Lorentzian/Drude
  susceptibilities](#gyrotropiclorentziansusceptibility-or-gyrotropicdrudesusceptibility),
  the magnitude is ignored; instead, the relevant precession frequencies are
  determined by the `sigma` and `frequency` parameters.

</div>

</div>


---
<a id="Vector3"></a>

### Vector3

```python
class Vector3(object):
```

<div class="class_docstring" markdown="1">

Properties:

**`x`, `y`, `z` [`float` or `complex`]** — The `x`, `y`, and `z` components of the
vector. Generally, functions that take a `Vector3` as an argument will accept an
iterable (e.g., a tuple or list) and automatically convert to a `Vector3`.

</div>


<a id="Vector3.__add__"></a>

<div class="class_members" markdown="1">

```python
def __add__(self, other):
```

<div class="method_docstring" markdown="1">

Return the sum of the two vectors.

```python
v3 = v1 + v2
```

</div>

</div>


<a id="Vector3.__eq__"></a>

<div class="class_members" markdown="1">

```python
def __eq__(self, other):
```

<div class="method_docstring" markdown="1">

Returns whether or not the two vectors are numerically equal. Beware of using this
function after operations that may have some error due to the finite precision of
floating-point numbers; use `close` instead.

```python
v1 == v2
```

</div>

</div>


<a id="Vector3.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             x: float = 0.0,
             y: float = 0.0,
             z: float = 0.0):
```

<div class="method_docstring" markdown="1">

Create a new `Vector3` with the given components. All three components default to
zero. This can also be represented simply as `(x,y,z)` or `[x,y,z]`.

</div>

</div>


<a id="Vector3.__mul__"></a>

<div class="class_members" markdown="1">

```python
def __mul__(self, other):
```

<div class="method_docstring" markdown="1">

If `other` is a `Vector3`, returns the dot product of `v1` and `other`. If `other`
is a number, then `v1` is scaled by the number.

```python
c = v1 * other
```

</div>

</div>


<a id="Vector3.__ne__"></a>

<div class="class_members" markdown="1">

```python
def __ne__(self, other):
```

<div class="method_docstring" markdown="1">

Returns whether or not the two vectors are numerically unequal. Beware of using
this function after operations that may have some error due to the finite
precision of floating-point numbers; use `close` instead.

```python
v1 != v2
```

</div>

</div>


<a id="Vector3.__repr__"></a>

<div class="class_members" markdown="1">

```python
def __repr__(self):
```

<div class="method_docstring" markdown="1">

Return repr(self).

</div>

</div>


<a id="Vector3.__rmul__"></a>

<div class="class_members" markdown="1">

```python
def __rmul__(self, other):
```

<div class="method_docstring" markdown="1">

If `other` is a `Vector3`, returns the dot product of `v1` and `other`. If `other`
is a number, then `v1` is scaled by the number.

```python
c = other * v1
```

</div>

</div>


<a id="Vector3.__sub__"></a>

<div class="class_members" markdown="1">

```python
def __sub__(self, other):
```

<div class="method_docstring" markdown="1">

Return the difference of the two vectors.

```python
v3 = v1 - v2
```

</div>

</div>


<a id="Vector3.cdot"></a>

<div class="class_members" markdown="1">

```python
def cdot(self, v):
```

<div class="method_docstring" markdown="1">

Returns the conjugated dot product: `conj(self)` dot `v`.

</div>

</div>


<a id="Vector3.close"></a>

<div class="class_members" markdown="1">

```python
def close(self, v, tol=1e-07):
```

<div class="method_docstring" markdown="1">

Returns whether or not the corresponding components of the `self` and `v` vectors
are within `tol` of each other. Defaults to 1e-7.

```python
v1.close(v2, [tol])
```

</div>

</div>


<a id="Vector3.cross"></a>

<div class="class_members" markdown="1">

```python
def cross(self, v):
```

<div class="method_docstring" markdown="1">

Return the cross product of `self` and `v`.

```python
v3 = v1.cross(v2)
```

</div>

</div>


<a id="Vector3.dot"></a>

<div class="class_members" markdown="1">

```python
def dot(self, v):
```

<div class="method_docstring" markdown="1">

Returns the dot product of *`self`* and *`v`*.

```python
v3 = v1.dot(v2)
```

</div>

</div>


<a id="Vector3.norm"></a>

<div class="class_members" markdown="1">

```python
def norm(self):
```

<div class="method_docstring" markdown="1">

Returns the length `math.sqrt(abs(self.dot(self)))` of the given vector.

```python
v2 = v1.norm()
```

</div>

</div>


<a id="Vector3.rotate"></a>

<div class="class_members" markdown="1">

```python
def rotate(self, axis, theta):
```

<div class="method_docstring" markdown="1">

Returns the vector rotated by an angle *`theta`* (in radians) in the right-hand
direction around the *`axis`* vector (whose length is ignored). You may find the
python functions `math.degrees` and `math.radians` useful to convert angles
between degrees and radians.

```python
v2 = v1.rotate(axis, theta)
```

</div>

</div>


<a id="Vector3.unit"></a>

<div class="class_members" markdown="1">

```python
def unit(self):
```

<div class="method_docstring" markdown="1">

Returns a unit vector in the direction of the vector.

```python
v2 = v1.unit()
```

</div>

</div>


---
<a id="GeometricObject"></a>

### GeometricObject

```python
class GeometricObject(object):
```

<div class="class_docstring" markdown="1">

This class, and its descendants, are used to specify the solid geometric objects that
form the dielectric structure being simulated.

In a 2d calculation, only the intersections of the objects with the $xy$ plane are
considered.

**Geometry Utilities**

See the [MPB documentation](https://mpb.readthedocs.io/en/latest/Python_User_Interface/#geometry-utilities)
for utility functions to help manipulate geometric objects.

**Examples**

These are some examples of geometric objects created using some `GeometricObject`
subclasses:

```python
# A cylinder of infinite radius and height 0.25 pointing along the x axis,
# centered at the origin:
cyl = mp.Cylinder(center=mp.Vector3(0,0,0), height=0.25, radius=mp.inf,
                axis=mp.Vector3(1,0,0), material=mp.Medium(index=3.5))
```

```python
# An ellipsoid with its long axis pointing along (1,1,1), centered on
# the origin (the other two axes are orthogonal and have equal semi-axis lengths):
ell = mp.Ellipsoid(center=mp.Vector3(0,0,0), size=mp.Vector3(0.8,0.2,0.2),
                e1=Vector3(1,1,1), e2=Vector3(0,1,-1), e3=Vector3(-2,1,1),
                material=mp.Medium(epsilon=13))
```

```python
# A unit cube of material metal with a spherical air hole of radius 0.2 at
# its center, the whole thing centered at (1,2,3):
geometry=[mp.Block(center=Vector3(1,2,3), size=Vector3(1,1,1), material=mp.metal),
        mp.Sphere(center=Vector3(1,2,3), radius=0.2, material=mp.air)]
```

```python
# A hexagonal prism defined by six vertices centered on the origin
# of material crystalline silicon (from the materials library)
vertices = [mp.Vector3(-1,0),
            mp.Vector3(-0.5,math.sqrt(3)/2),
            mp.Vector3(0.5,math.sqrt(3)/2),
            mp.Vector3(1,0),
            mp.Vector3(0.5,-math.sqrt(3)/2),
            mp.Vector3(-0.5,-math.sqrt(3)/2)]

geometry = [mp.Prism(vertices, height=1.5, center=mp.Vector3(), material=cSi)]
```

</div>


<a id="GeometricObject.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             material=Medium(),
             center=Vector3<0.0, 0.0, 0.0>,
             epsilon_func=None):
```

<div class="method_docstring" markdown="1">

Construct a `GeometricObject`.

+ **`material` [`Medium` class or function ]** — The material that the object is
  made of (usually some sort of dielectric). Uses default `Medium`. If a function
  is supplied, it must take one argument and return a Python `Medium`.

+ **`epsilon_func` [ function ]** — A function that takes one argument (a
  `Vector3`) and returns the dielectric constant at that point. Can be used
  instead of `material`. Default is `None`.

+ **`center` [`Vector3`]** — Center point of the object. Defaults to `(0,0,0)`.

One normally does not create objects of type `GeometricObject` directly, however;
instead, you use one of the following subclasses. Recall that subclasses inherit
the properties of their superclass, so these subclasses automatically have the
`material` and `center` properties and can be specified in a subclass's
constructor via keyword arguments.

</div>

</div>


<a id="GeometricObject.info"></a>

<div class="class_members" markdown="1">

```python
def info(self, indent_by=0):
```

<div class="method_docstring" markdown="1">

Displays all properties and current values of a `GeometricObject`, indented by
`indent_by` spaces (default is 0).

</div>

</div>


<a id="GeometricObject.shift"></a>

<div class="class_members" markdown="1">

```python
def shift(self, vec):
```

<div class="method_docstring" markdown="1">

Shifts the object's `center` by `vec` (`Vector3`), returning a new object.
This can also be accomplished via the `+` operator:

```python
geometric_obj + Vector3(10,10,10)
```

Using `+=` will shift the object in place.

</div>

</div>


---
<a id="Sphere"></a>

### Sphere

```python
class Sphere(GeometricObject):
```

<div class="class_docstring" markdown="1">

Represents a sphere.

**Properties:**

+ **`radius` [`number`]** — Radius of the sphere. No default value.

</div>


<a id="Sphere.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, radius, **kwargs):
```

<div class="method_docstring" markdown="1">

Constructs a `Sphere`

</div>

</div>


---
<a id="Cylinder"></a>

### Cylinder

```python
class Cylinder(GeometricObject):
```

<div class="class_docstring" markdown="1">

A cylinder, with circular cross-section and finite height.

**Properties:**

+ **`radius` [`number`]** — Radius of the cylinder's cross-section. No default value.

+ **`height` [`number`]** — Length of the cylinder along its axis. No default value.

+ **`axis` [`Vector3`]** — Direction of the cylinder's axis; the length of this vector
  is ignored. Defaults to `Vector3(x=0, y=0, z=1)`.

</div>


<a id="Cylinder.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             radius,
             axis=Vector3<0.0, 0.0, 1.0>,
             height=1e+20,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Constructs a `Cylinder`.

</div>

</div>


---
<a id="Wedge"></a>

### Wedge

```python
class Wedge(Cylinder):
```

<div class="class_docstring" markdown="1">

Represents a cylindrical wedge.

</div>


<a id="Wedge.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             radius,
             wedge_angle=6.283185307179586,
             wedge_start=Vector3<1.0, 0.0, 0.0>,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Constructs a `Wedge`.

</div>

</div>


---
<a id="Cone"></a>

### Cone

```python
class Cone(Cylinder):
```

<div class="class_docstring" markdown="1">

A cone, or possibly a truncated cone. This is actually a subclass of `Cylinder`, and
inherits all of the same properties, with one additional property. The radius of the
base of the cone is given by the `radius` property inherited from `Cylinder`, while
the radius of the tip is given by the new property, `radius2`. The `center` of a cone
is halfway between the two circular ends.

</div>


<a id="Cone.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, radius, radius2=0, **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `Cone`.

**`radius2` [`number`]**
—
Radius of the tip of the cone (i.e. the end of the cone pointed to by the `axis` vector). Defaults to zero (a "sharp" cone).

</div>

</div>


---
<a id="Block"></a>

### Block

```python
class Block(GeometricObject):
```

<div class="class_docstring" markdown="1">

A parallelepiped (i.e., a brick, possibly with non-orthogonal axes).

</div>


<a id="Block.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             size,
             e1=Vector3<1.0, 0.0, 0.0>,
             e2=Vector3<0.0, 1.0, 0.0>,
             e3=Vector3<0.0, 0.0, 1.0>,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `Block`.

+ **`size` [`Vector3`]** — The lengths of the block edges along each of its three
  axes. Not really a 3-vector, but it has three components, each of which should
  be nonzero. No default value.

+ **`e1`, `e2`, `e3` [`Vector3`]** — The directions of the axes of the block; the
  lengths of these vectors are ignored. Must be linearly independent. They default
  to the three lattice directions.

</div>

</div>


---
<a id="Ellipsoid"></a>

### Ellipsoid

```python
class Ellipsoid(Block):
```

<div class="class_docstring" markdown="1">

An ellipsoid. This is actually a subclass of `Block`, and inherits all the same
properties, but defines an ellipsoid inscribed inside the block.

</div>


<a id="Ellipsoid.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, **kwargs):
```

<div class="method_docstring" markdown="1">

Construct an `Ellipsoid`.

</div>

</div>


---
<a id="Prism"></a>

### Prism

```python
class Prism(GeometricObject):
```

<div class="class_docstring" markdown="1">

Polygonal prism type.

</div>


<a id="Prism.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             vertices,
             height,
             axis=Vector3<0.0, 0.0, 1.0>,
             center=None,
             sidewall_angle=0,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `Prism`.

+ **`vertices` [list of `Vector3`]** — The vertices that make up the prism. They
  must lie in a plane that's perpendicular to the `axis`. Note that infinite
  lengths are not supported. To simulate infinite geometry, just extend the edge
  of the prism beyond the cell.

+ **`height` [`number`]** — The prism thickness, extruded in the direction of
  `axis`. `mp.inf` can be used for infinite height. No default value.

+ **`axis` [`Vector3`]** — The axis perpendicular to the prism. Defaults to
  `Vector3(0,0,1)`.

+ **`center` [`Vector3`]** — If `center` is not specified, then the coordinates of
  the `vertices` define the *bottom* of the prism with the top of the prism being
  at the same coordinates shifted by `height*axis`. If `center` is specified, then
  `center` is the coordinates of the
  [centroid](https://en.wikipedia.org/wiki/Centroid) of all the vertices (top and
  bottom) of the resulting 3d prism so that the coordinates of the `vertices` are
  shifted accordingly.

+ **`sidewall_angle` [`number`]** — The sidewall angle of the prism in units of
  radians. Default is 0.

</div>

</div>


---
<a id="Matrix"></a>

### Matrix

```python
class Matrix(object):
```

<div class="class_docstring" markdown="1">

The `Matrix` class represents a 3x3 matrix with c1, c2, and c3 as its columns.

```python
m.transpose()
m.getH() or m.H
m.determinant()
m.inverse()
```

Return the transpose, adjoint (conjugate transpose), determinant, or inverse of the
given matrix.

```python
m1 + m2
m1 - m2
m1 * m2
```

Return the sum, difference, or product of the given matrices.

```python
v * m
m * v
```

Returns the `Vector3` product of the matrix `m` by the vector `v`, with the vector
multiplied on the left or the right respectively.

```python
s * m
m * s
```

Scales the matrix `m` by the number `s`.

</div>


<a id="Matrix.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             c1=Vector3<0.0, 0.0, 0.0>,
             c2=Vector3<0.0, 0.0, 0.0>,
             c3=Vector3<0.0, 0.0, 0.0>,
             diag=Vector3<0.0, 0.0, 0.0>,
             offdiag=Vector3<0.0, 0.0, 0.0>):
```

<div class="method_docstring" markdown="1">

Constructs a `Matrix`.

</div>

</div>


<a id="Matrix.__repr__"></a>

<div class="class_members" markdown="1">

```python
def __repr__(self):
```

<div class="method_docstring" markdown="1">

Return repr(self).

</div>

</div>


**Related function:**

<a id="get_rotation_matrix"></a>

```python
def get_rotation_matrix(axis, theta):
```

<div class="function_docstring" markdown="1">

Like `Vector3.rotate`, except returns the (unitary) rotation matrix that performs the
given rotation. i.e., `get_rotation_matrix(axis, theta) * v` produces the same result
as `v.rotate(axis, theta)`.

+ `axis` [`Vector3`] — The vector around which the rotation is applied in the right-hand direction.

+ `theta` [`number`] — The rotation angle (in radians).

</div>



---
<a id="Symmetry"></a>

### Symmetry

```python
class Symmetry(object):
```

<div class="class_docstring" markdown="1">

This class is used for the `symmetries` input variable to specify symmetries which
must preserve both the structure *and* the sources. Any number of symmetries can be
exploited simultaneously but there is no point in specifying redundant symmetries: the
cell can be reduced by at most a factor of 4 in 2d and 8 in 3d. See also [Exploiting
Symmetry](Exploiting_Symmetry.md). This is the base class of the specific symmetries
below, so normally you don't create it directly. However, it has two properties which
are shared by all symmetries:

The specific symmetry sub-classes are:

**`Mirror`** — A mirror symmetry plane. `direction` is the direction *normal* to the
mirror plane.

**`Rotate2`** — A 180° (twofold) rotational symmetry (a.k.a. $C_2$). `direction` is
the axis of the rotation.

**`Rotate4`** — A 90° (fourfold) rotational symmetry (a.k.a. $C_4$). `direction` is
the axis of the rotation.

</div>


<a id="Symmetry.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             direction: int = None,
             phase: complex = (1+0j)):
```

<div class="method_docstring" markdown="1">

Construct a `Symmetry`.

+ **`direction` [`direction` constant ]** — The direction of the symmetry (the
  normal to a mirror plane or the axis for a rotational symmetry). e.g. `X`, `Y`,
  or `Z` (only Cartesian/grid directions are allowed). No default value.

+ **`phase` [`complex`]** — An additional phase to multiply the fields by when
  operating the symmetry on them. Default is +1, e.g. a phase of -1 for a mirror
  plane corresponds to an *odd* mirror. Technically, you are essentially
  specifying the representation of the symmetry group that your fields and sources
  transform under.

</div>

</div>


---
<a id="Rotate2"></a>

### Rotate2

```python
class Rotate2(Symmetry):
```

<div class="class_docstring" markdown="1">

A 180° (twofold) rotational symmetry (a.k.a. $C_2$). `direction` is the axis of the
rotation.

</div>



---
<a id="Rotate4"></a>

### Rotate4

```python
class Rotate4(Symmetry):
```

<div class="class_docstring" markdown="1">

A 90° (fourfold) rotational symmetry (a.k.a. $C_4$). `direction` is the axis of the
rotation.

</div>



---
<a id="Mirror"></a>

### Mirror

```python
class Mirror(Symmetry):
```

<div class="class_docstring" markdown="1">

A mirror symmetry plane. `direction` is the direction *normal* to the mirror plane.

</div>



---
<a id="Identity"></a>

### Identity

```python
class Identity(Symmetry):
```

<div class="class_docstring" markdown="1">



</div>



---
<a id="PML"></a>

### PML

```python
class PML(object):
```

<div class="class_docstring" markdown="1">

This class is used for specifying the PML absorbing boundary layers around the cell,
if any, via the `boundary_layers` input variable. See also [Perfectly Matched
Layers](Perfectly_Matched_Layer.md). `boundary_layers` can be zero or more `PML`
objects, with multiple objects allowing you to specify different PML layers on
different boundaries. The class represents a single PML layer specification, which
sets up one or more PML layers around the boundaries according to the following
properties.

</div>


<a id="PML.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             thickness: float = None,
             direction: int = -1,
             side: int = -1,
             R_asymptotic: float = 1e-15,
             mean_stretch: float = 1.0,
             pml_profile: Callable[[float], float] = <function <lambda> at 0x7f41474eeb00>):
```

<div class="method_docstring" markdown="1">

+ **`thickness` [`number`]** — The spatial thickness of the PML layer which
  extends from the boundary towards the *inside* of the cell. The thinner it is,
  the more numerical reflections become a problem. No default value.

+ **`direction` [`direction` constant ]** — Specify the direction of the
  boundaries to put the PML layers next to. e.g. if `X`, then specifies PML on the
  $\pm x$ boundaries (depending on the value of `side`, below). Default is the
  special value `ALL`, which puts PML layers on the boundaries in all directions.

+ **`side` [`side` constant ]** — Specify which side, `Low` or `High` of the
  boundary or boundaries to put PML on. e.g. if side is `Low` and direction is
  `meep.X`, then a PML layer is added to the $-x$ boundary. Default is the special
  value `meep.ALL`, which puts PML layers on both sides.

+ **`R_asymptotic` [`number`]** — The asymptotic reflection in the limit of
  infinite resolution or infinite PML thickness, for reflections from air (an
  upper bound for other media with index &gt; 1). For a finite resolution or
  thickness, the reflection will be *much larger*, due to the discretization of
  Maxwell's equation. Default value is 10<sup>−15</sup>, which should suffice for
  most purposes. You want to set this to be small enough so that waves propagating
  within the PML are attenuated sufficiently, but making `R_asymptotic` too small
  will increase the numerical reflection due to discretization.

+ **`pml_profile` [`function`]** — By default, Meep turns on the PML conductivity
  quadratically within the PML layer &mdash; one doesn't want to turn it on
  suddenly, because that exacerbates reflections due to the discretization. More
  generally, with `pml_profile` one can specify an arbitrary PML "profile"
  function $f(u)$ that determines the shape of the PML absorption profile up to an
  overall constant factor. *u* goes from 0 to 1 at the start and end of the PML,
  and the default is $f(u) = u^2$. In some cases where a very thick PML is
  required, such as in a periodic medium (where there is technically no such thing
  as a true PML, only a pseudo-PML), it can be advantageous to turn on the PML
  absorption more smoothly. See [Optics Express, Vol. 16, pp. 11376-92
  (2008)](http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11376). For
  example, one can use a cubic profile $f(u) = u^3$ by specifying
  `pml_profile=lambda u: u*u*u`.

</div>

</div>


---
<a id="Absorber"></a>

### Absorber

```python
class Absorber(PML):
```

<div class="class_docstring" markdown="1">

Instead of a `PML` layer, there is an alternative class called `Absorber` which is a
**drop-in** replacement for `PML`. For example, you can do
`boundary_layers=[mp.Absorber(thickness=2)]` instead of
`boundary_layers=[mp.PML(thickness=2)]`. All the parameters are the same as for `PML`,
above. You can have a mix of `PML` on some boundaries and `Absorber` on others.

The `Absorber` class does *not* implement a perfectly matched layer (PML), however
(except in 1d). Instead, it is simply a scalar electric **and** magnetic conductivity
that turns on gradually within the layer according to the `pml_profile` (defaulting to
quadratic). Such a scalar conductivity gradient is only reflectionless in the limit as
the layer becomes sufficiently thick.

The main reason to use `Absorber` is if you have **a case in which PML fails:**

-   No true PML exists for *periodic* media, and a scalar absorber is computationally
    less expensive and generally just as good. See [Optics Express, Vol. 16, pp.
    11376-92 (2008)](http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11376).
-   PML can lead to *divergent* fields for certain waveguides with "backward-wave"
    modes; this can readily occur in metals with surface plasmons, and a scalar
    absorber is your only choice. See [Physical Review E, Vol. 79, 065601
    (2009)](http://math.mit.edu/~stevenj/papers/LohOs09.pdf).
-   PML can fail if you have a waveguide hitting the edge of your cell *at an angle*.
    See [J. Computational Physics, Vol. 230, pp. 2369-77
    (2011)](http://math.mit.edu/~stevenj/papers/OskooiJo11.pdf).

</div>



---
<a id="Source"></a>

### Source

```python
class Source(object):
```

<div class="class_docstring" markdown="1">

The `Source` class is used to specify the current sources via the `Simulation.sources`
attribute. Note that all sources in Meep are separable in time and space, i.e. of the
form $\mathbf{J}(\mathbf{x},t) = \mathbf{A}(\mathbf{x}) \cdot f(t)$ for some functions
$\mathbf{A}$ and $f$. Non-separable sources can be simulated, however, by modifying
the sources after each time step. When real fields are being used (which is the
default in many cases; see `Simulation.force_complex_fields`), only the real part of
the current source is used.

**Important note**: These are *current* sources (**J** terms in Maxwell's equations),
even though they are labelled by electric/magnetic field components. They do *not*
specify a particular electric/magnetic field which would be what is called a "hard"
source in the FDTD literature. There is no fixed relationship between the current
source and the resulting field amplitudes; it depends on the surrounding geometry, as
described in the
[FAQ](FAQ.md#how-does-the-current-amplitude-relate-to-the-resulting-field-amplitude)
and in Section 4.4 ("Currents and Fields: The Local Density of States") in [Chapter
4](http://arxiv.org/abs/arXiv:1301.5366) ("Electromagnetic Wave Source Conditions") of
the book [Advances in FDTD Computational Electrodynamics: Photonics and
Nanotechnology](https://www.amazon.com/Advances-FDTD-Computational-Electrodynamics-Nanotechnology/dp/1608071707).

</div>


<a id="Source.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             src,
             component,
             center=None,
             volume=None,
             size=Vector3<0.0, 0.0, 0.0>,
             amplitude=1.0,
             amp_func=None,
             amp_func_file='',
             amp_data=None):
```

<div class="method_docstring" markdown="1">

Construct a `Source`.

+ **`src` [`SourceTime` class ]** — Specify the time-dependence of the source (see
  below). No default.

+ **`component` [`component` constant ]** — Specify the direction and type of the
  current component: e.g. `mp.Ex`, `mp.Ey`, etcetera for an electric-charge
  current, and `mp.Hx`, `mp.Hy`, etcetera for a magnetic-charge current. Note that
  currents pointing in an arbitrary direction are specified simply as multiple
  current sources with the appropriate amplitudes for each component. No default.

+ **`center` [`Vector3`]** — The location of the center of the current source in
  the cell. No default.

+ **`size` [`Vector3`]** — The size of the current distribution along each
  direction of the cell. Default is `(0,0,0)`: a point-dipole source.

+ **`volume` [`Volume`]** — A `meep.Volume` can be used to specify the source
  region instead of a `center` and a `size`.

+ **`amplitude` [`complex`]** — An overall complex amplitude multiplying the
  current source. Default is 1.0. Note that specifying a complex `amplitude`
  imparts a phase shift to the real part of the overall current and thus
  does *not* require using complex fields for the entire simulation
  (via `force_complex_fields=True`).

+ **`amp_func` [`function`]** — A Python function of a single argument, that takes
  a `Vector3` giving a position and returns a complex current amplitude for that
  point. The position argument is *relative* to the `center` of the current
  source, so that you can move your current around without changing your function.
  Default is `None`, meaning that a constant amplitude of 1.0 is used. Note that
  your amplitude function (if any) is *multiplied* by the `amplitude` property, so
  both properties can be used simultaneously.

+ **`amp_func_file` [`string`]** — String of the form
  `path_to_h5_file.h5:dataset`. The `.h5` extension is optional. Meep will read
  the HDF5 file and create an amplitude function that interpolates into the grid
  specified by the file. Meep expects the data to be split into real and imaginary
  parts, so in the above example it will look for `dataset.re` and `dataset.im` in
  the file `path_to_h5_file.h5`. Defaults to the empty string.

+ **`amp_data` [`numpy.ndarray with dtype=numpy.complex128`]** — Like
  `amp_func_file` above, but instead of interpolating into an HDF5 file,
  interpolates into a complex NumPy array. The array should be three dimensions.
  For a 2d simulation, just pass 1 for the third dimension, e.g., `arr =
  np.zeros((N, M, 1), dtype=np.complex128)`. Defaults to `None`.

As described in Section 4.2 ("Incident Fields and Equivalent Currents") in
[Chapter 4](http://arxiv.org/abs/arXiv:1301.5366) ("Electromagnetic Wave Source
Conditions") of the book [Advances in FDTD Computational Electrodynamics:
Photonics and Nanotechnology](https://www.amazon.com/Advances-FDTD-Computational-Electrodynamics-Nanotechnology/dp/1608071707),
it is also possible to supply a source that is designed to couple exclusively into
a single waveguide mode (or other mode of some cross section or periodic region)
at a single frequency, and which couples primarily into that mode as long as the
bandwidth is not too broad. This is possible if you have
[MPB](https://mpb.readthedocs.io) installed: Meep will call MPB to compute the
field profile of the desired mode, and use the field profile to produce an
equivalent current source. The mode-launcher feature does *not* work in
cylindrical coordinates. To use the mode launcher, instead of a `source` you
should use an `EigenModeSource`.

</div>

</div>


---
<a id="SourceTime"></a>

### SourceTime

```python
class SourceTime(object):
```

<div class="class_docstring" markdown="1">

This is the parent for classes describing the time dependence of sources; it should
not be instantiated directly.

</div>


---
<a id="EigenModeSource"></a>

### EigenModeSource

```python
class EigenModeSource(Source):
```

<div class="class_docstring" markdown="1">

This is a subclass of `Source` and has **all of the properties** of `Source` above.
However, you normally do not specify a `component`. Instead of `component`, the
current source components and amplitude profile are computed by calling MPB to compute
the modes, $\mathbf{u}_{n,\mathbf{k}}(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}$,
of the dielectric profile in the region given by the `size` and `center` of the
source, with the modes computed as if the *source region were repeated periodically in
all directions*. If an `amplitude` and/or `amp_func` are supplied, they are
*multiplied* by this current profile. The desired eigenmode and other features are
specified by the properties shown in `__init__`.

Eigenmode sources are normalized so that in the case of a time-harmonic simulation
with all sources and fields having monochromatic time dependence $e^{-i 2\pi f_m t}$
where $f_m$ is the frequency of the eigenmode, the total time-average power of the
fields — the integral of the normal Poynting vector over the entire cross-sectional
line or plane — is equal to 1. This convention has two use cases:

+ For [frequency-domain
  calculations](Python_User_Interface.md#frequency-domain-solver) involving a
  `ContinuousSource` time dependence, the time-average power of the fields is 1.

+ For time-domain calculations involving a time dependence $W(t)$ which is typically a
  [Gaussian](#gaussiansource), the amplitude of the fields at frequency $f$ will be
  multiplied by $\widetilde W(f)$, the Fourier transform of $W(t)$, while
  field-bilinear quantities like the [Poynting flux](#flux-spectra) and [energy
  density](#energy-density-spectra) are multiplied by $|\widetilde W(f)|^2$. For the
  particular case of a Gaussian time dependence, the Fourier transform at $f$ can be
  obtained via the `fourier_transform` class method.

In either case, the `eig_power` method returns the total power at frequency `f`.
However, for a user-defined [`CustomSource`](#customsource), `eig_power` will *not*
include the $|\widetilde W(f)|^2$ factor since Meep does not know the Fourier
transform of your source function $W(t)$. You will have to multiply by this yourself
if you need it.

**Note:** Due to discretization effects, the normalization of eigenmode sources to
yield unit power transmission is only approximate: at any finite resolution, the power
of the fields as measured using [DFT flux](#flux-spectra) monitors will not precisely
match that of calling `eig_power` but will rather include discretization errors that
decrease with resolution.  Generally, the most reliable procedure is to normalize your
calculations by the power computed in a separate normalization run at the same
resolution, as shown in several of the tutorial examples.

Note that Meep's MPB interface only supports dispersionless non-magnetic materials but
it does support anisotropic $\varepsilon$. Any nonlinearities, magnetic responses $\mu$,
conductivities $\sigma$, or dispersive polarizations in your materials will be *ignored* when
computing the eigenmode source. PML will also be ignored.

The `SourceTime` object (`Source.src`), which specifies the time dependence of the
source, can be one of `ContinuousSource`, `GaussianSource` or `CustomSource`.

</div>


<a id="EigenModeSource.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             src,
             center=None,
             volume=None,
             eig_lattice_size=None,
             eig_lattice_center=None,
             component=mp.ALL_COMPONENTS,
             direction=mp.AUTOMATIC,
             eig_band=1,
             eig_kpoint=Vector3<0.0, 0.0, 0.0>,
             eig_match_freq=True,
             eig_parity=mp.NO_PARITY,
             eig_resolution=0,
             eig_tolerance=1e-12,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct an `EigenModeSource`.

+ **`eig_band` [`integer` or `DiffractedPlanewave` class]** — Either the index $n$
  (1,2,3,...) of the desired band $\omega_n(\mathbf{k})$ to compute in MPB where
  1 denotes the lowest-frequency band at a given $\mathbf{k}$ point, and so on,
  or alternatively a diffracted planewave in homogeneous media.

+ **`direction` [`mp.X`, `mp.Y`, or `mp.Z;` default `mp.AUTOMATIC`],
  `eig_match_freq` [`boolean;` default `True`], `eig_kpoint` [`Vector3`]** — By
  default (if `eig_match_freq` is `True`), Meep tries to find a mode with the same
  frequency $\omega_n(\mathbf{k})$ as the `src` property (above), by scanning
  $\mathbf{k}$ vectors in the given `direction` using MPB's `find_k` functionality.
  Alternatively, if `eig_kpoint` is supplied, it is used as an initial guess for
  $\mathbf{k}$. By default, `direction` is the direction normal to the source region,
  assuming `size` is $d$–1 dimensional in a $d$-dimensional simulation (e.g. a
  plane in 3d). If `direction` is set to `mp.NO_DIRECTION`, then `eig_kpoint` is
  not only the initial guess and the search direction of the $\mathbf{k}$ vectors, but is
  also taken to be the direction of the waveguide, allowing you to [launch modes
  in oblique ridge waveguides](Python_Tutorials/Eigenmode_Source.md#oblique-waveguides)
  (not perpendicular to the source plane).  If `eig_match_freq` is `False`, then the
  $\mathbf{k}$ vector of the desired mode is specified with  `eig_kpoint` (in Meep units
  of 2Ï€/(unit length)). Also, the eigenmode frequency computed by MPB overwrites
  the `frequency` parameter of the `src` property for a `GaussianSource` and
  `ContinuousSource` but not `CustomSource` (the `width` or any other parameter of
  `src` is unchanged). By default, the $\mathbf{k}$ components in the plane of the source
  region are zero.  However, if the source region spans the *entire* cell in some
  directions, and the cell has Bloch-periodic boundary conditions via the
  `k_point` parameter, then the mode's $\mathbf{k}$ components in those directions will
  match `k_point` so that the mode satisfies the Meep boundary conditions,
  regardless of `eig_kpoint`. Note that once $\mathbf{k}$ is either found by MPB, or
  specified by `eig_kpoint`, the field profile used to create the current sources
  corresponds to the [Bloch mode](https://en.wikipedia.org/wiki/Bloch_wave),
  $\mathbf{u}_{n,\mathbf{k}}(\mathbf{r})$, multiplied by the appropriate
  exponential factor, $e^{i \mathbf{k} \cdot \mathbf{r}}$.

+ **`eig_parity` [`mp.NO_PARITY` (default), `mp.EVEN_Z`, `mp.ODD_Z`, `mp.EVEN_Y`,
  `mp.ODD_Y`]** — The parity (= polarization in 2d) of the mode to calculate,
  assuming the structure has $z$ and/or $y$ mirror symmetry *in the source
  region*, with respect to the `center` of the source region.  (In particular, it
  does not matter if your simulation as a whole has that symmetry, only the cross
  section where you are introducing the source.) If the structure has both $y$ and
  $z$ mirror symmetry, you can combine more than one of these, e.g. `EVEN_Z + ODD_Y`.
  Default is `NO_PARITY`, in which case MPB computes all of the bands
  which will still be even or odd if the structure has mirror symmetry, of course.
  This is especially useful in 2d simulations to restrict yourself to a desired
  polarization.

+ **`eig_resolution` [`integer`, defaults to `2*resolution` ]** — The spatial
  resolution to use in MPB for the eigenmode calculations. This defaults to twice
  the Meep `resolution` in which case the structure is linearly interpolated from
  the Meep pixels.

+ **`eig_tolerance` [`number`, defaults to 10<sup>–12</sup> ]** — The tolerance to
  use in the MPB eigensolver. MPB terminates when the eigenvalues stop changing to
  less than this fractional tolerance.

+ **`component` [as above, but defaults to `ALL_COMPONENTS`]** — Once the MPB
  modes are computed, equivalent electric and magnetic sources are created within
  Meep. By default, these sources include magnetic and electric currents in *all*
  transverse directions within the source region, corresponding to the mode fields
  as described in Section 4.2 ("Incident Fields and Equivalent Currents") in
  [Chapter 4](http://arxiv.org/abs/arXiv:1301.5366) ("Electromagnetic Wave Source
  Conditions") of the book [Advances in FDTD Computational Electrodynamics:
  Photonics and Nanotechnology](https://www.amazon.com/Advances-FDTD-Computational-Electrodynamics-Nanotechnology/dp/1608071707).
  If you specify a `component` property, however, you can include only one
  component of these currents if you wish. Most users won't need this feature.

+ **`eig_lattice_size` [`Vector3`], `eig_lattice_center` [`Vector3`]** — Normally,
  the MPB computational unit cell is the same as the source volume given by the
  `size` and `center` parameters. However, occasionally you want the unit cell to
  be larger than the source volume. For example, to create an eigenmode source in
  a periodic medium, you need to pass MPB the entire unit cell of the periodic
  medium, but once the mode is computed then the actual current sources need only
  lie on a cross section of that medium. To accomplish this, you can specify the
  optional `eig_lattice_size` and `eig_lattice_center`, which define a volume
  (which must enclose `size` and `center`) that is used for the unit cell in MPB
  with the dielectric function ε taken from the corresponding region in the Meep
  simulation.

</div>

</div>


<a id="EigenModeSource.eig_power"></a>

<div class="class_members" markdown="1">

```python
def eig_power(self, freq):
```

<div class="method_docstring" markdown="1">

Returns the total power of the fields from the eigenmode source at frequency `freq`.

</div>

</div>


---
<a id="GaussianBeamSource"></a>

### GaussianBeamSource

```python
class GaussianBeamSource(Source):
```

<div class="class_docstring" markdown="1">

This is a subclass of `Source` and has **all of the properties** of `Source` above. However, the `component` parameter of the `Source` object is ignored. The [Gaussian beam](https://en.wikipedia.org/wiki/Gaussian_beam) is a transverse electromagnetic mode for which the source region must be a *line* (in 2d) or *plane* (in 3d). For a beam polarized in the $x$ direction with propagation along $+z$, the electric field is defined by $\mathbf{E}(r,z)=E_0\hat{x}\frac{w_0}{w(z)}\exp\left(\frac{-r^2}{w(z)^2}\right)\exp\left(-i\left(kz + k\frac{r^2}{2R(z)}\right)\right)$ where $r$ is the radial distance from the center axis of the beam, $z$ is the axial distance from the beam's focus (or "waist"), $k=2\pi n/\lambda$ is the wavenumber (for a free-space wavelength $\lambda$ and refractive index $n$ of the homogeneous, lossless medium in which the beam propagates), $E_0$ is the electric field amplitude at the origin, $w(z)$ is the radius at which the field amplitude decays by $1/e$ of its axial values, $w_0$ is the beam waist radius, and $R(z)$ is the radius of curvature of the beam's wavefront at $z$. The only independent parameters that need to be specified are $w_0$, $E_0$, $k$, and the location of the beam focus (i.e., the origin: $r=z=0$).

(In 3d, we use a ["complex point-source" method](https://doi.org/10.1364/JOSAA.16.001381) to define a source that generates an exact Gaussian-beam solution.  In 2d, we currently use the simple approximation of taking a cross-section of the 3d beam.  In both cases, the beam is most accurate near the source's center frequency.)

The `SourceTime` object (`Source.src`), which specifies the time dependence of the source, should normally be a narrow-band `ContinuousSource` or `GaussianSource`.  (For a `CustomSource`, the beam frequency is determined by the source's `center_frequency` parameter.)

</div>


<a id="GaussianBeamSource.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             src,
             center=None,
             volume=None,
             component=mp.ALL_COMPONENTS,
             beam_x0=Vector3<0.0, 0.0, 0.0>,
             beam_kdir=Vector3<0.0, 0.0, 0.0>,
             beam_w0=None,
             beam_E0=Vector3<0.0, 0.0, 0.0>,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `GaussianBeamSource`.

+ **`beam_x0` [`Vector3`]** — The location of the beam focus *relative* to the center of the source. The beam focus does *not* need to lie within the source region (i.e., the beam focus can be anywhere, inside or outside the cell, independent of the position of the source).

+ **`beam_kdir` [`Vector3`]** — The propagation direction of the beam. The length is *ignored*. The wavelength of the beam is determined by the center frequency of the `Source.src` object and the refractive index (real part only) at the center of the source region.

+ **`beam_w0` [`number`]** — The beam waist radius.

+ **`beam_E0` [`Vector3`]** — The polarization vector of the beam. Elements can be complex valued (i.e., for circular polarization). The polarization vector must be *parallel* to the source region in order to generate a transverse mode.

</div>

</div>


---
<a id="ContinuousSource"></a>

### ContinuousSource

```python
class ContinuousSource(SourceTime):
```

<div class="class_docstring" markdown="1">

A continuous-wave (CW) source is proportional to $\exp(-i\omega t)$, possibly with a
smooth (exponential/tanh) turn-on/turn-off. In practice, the CW source [never produces
an exact single-frequency
response](FAQ.md#why-doesnt-the-continuous-wave-cw-source-produce-an-exact-single-frequency-response).

</div>


<a id="ContinuousSource.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             frequency=None,
             start_time=0,
             end_time=1e+20,
             width=0,
             fwidth=inf,
             cutoff=3.0,
             wavelength=None,
             is_integrated=False,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `ContinuousSource`.

+ **`frequency` [`number`]** — The frequency *f* in units of $c$/distance or ω in
  units of 2Ï€$c$/distance. See [Units](Introduction.md#units-in-meep). No default
  value. You can instead specify `wavelength=x` or `period=x`, which are both a
  synonym for `frequency=1/x`; i.e. 1/ω in these units is the vacuum wavelength or
  the temporal period.

+ **`start_time` [`number`]** — The starting time for the source. Default is 0
  (turn on at $t=0$).

+ **`end_time` [`number`]** — The end time for the source. Default is
  10<sup>20</sup> (never turn off).

+ **`width` [`number`]** — Roughly, the temporal width of the smoothing
  (technically, the inverse of the exponential rate at which the current turns off
  and on). Default is 0 (no smoothing). You can instead specify `fwidth=x`, which
  is a synonym for `width=1/x` (i.e. the frequency width is proportional to the
  inverse of the temporal width).

+ **`slowness` [`number`]** — Controls how far into the exponential tail of the
  tanh function the source turns on. Default is 3.0. A larger value means that the
  source turns on more gradually at the beginning.

+ **`is_integrated` [`boolean`]** — If `True`, the source is the integral of the
  current (the [dipole
  moment](https://en.wikipedia.org/wiki/Electric_dipole_moment)) which oscillates
  but does not increase for a sinusoidal current. In practice, there is little
  difference between integrated and non-integrated sources *except* for
  [planewaves extending into
  PML](Perfectly_Matched_Layer.md#planewave-sources-extending-into-pml). Default
  is `False`.

</div>

</div>


---
<a id="GaussianSource"></a>

### GaussianSource

```python
class GaussianSource(SourceTime):
```

<div class="class_docstring" markdown="1">

A Gaussian-pulse source roughly proportional to $\exp(-i\omega t - (t-t_0)^2/2w^2)$.
Technically, the "Gaussian" sources in Meep are the (discrete-time) derivative of a
Gaussian, i.e. they are $(-i\omega)^{-1} \frac{\partial}{\partial t} \exp(-i\omega t -
(t-t_0)^2/2w^2)$, but the difference between this and a true Gaussian is usually
irrelevant.

</div>


<a id="GaussianSource.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             frequency=None,
             width=0,
             fwidth=inf,
             start_time=0,
             cutoff=5.0,
             is_integrated=False,
             wavelength=None,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `GaussianSource`.

+ **`frequency` [`number`]** — The center frequency $f$ in units of $c$/distance
  (or $\omega$ in units of $2\pi c$/distance). See [Units](Introduction.md#units-in-meep).
  No default value. You can instead specify `wavelength=x` or `period=x`, which
  are both a synonym for `frequency=1/x`; i.e. $1/\omega$ in these units is the vacuum
  wavelength or the temporal period.

+ **`width` [`number`]** — The width $w$ used in the Gaussian. No default value.
  You can instead specify `fwidth=x`, which is a synonym for `width=1/x` (i.e. the
  frequency width is proportional to the inverse of the temporal width).

+ **`start_time` [`number`]** — The starting time for the source; default is 0
  (turn on at $t=0$). This is not the time of the peak. See below.

+ **`cutoff` [`number`]** — How many `width`s the current decays for before it is
  cut off and set to zero &mdash; this applies for both turn-on and turn-off of
  the pulse. Default is 5.0. A larger value of `cutoff` will reduce the amount of
  high-frequency components that are introduced by the start/stop of the source,
  but will of course lead to longer simulation times. The peak of the Gaussian is
  reached at the time $t_0$=`start_time + cutoff*width`.

+ **`is_integrated` [`boolean`]** — If `True`, the source is the integral of the
  current (the [dipole moment](https://en.wikipedia.org/wiki/Electric_dipole_moment))
  which is guaranteed to be zero after the current turns off. In practice, there
  is little difference between integrated and non-integrated sources *except* for
  [planewaves extending into PML](Perfectly_Matched_Layer.md#planewave-sources-extending-into-pml).
  Default is `False`.

+ **`fourier_transform(f)`** — Returns the Fourier transform of the current
  evaluated at frequency $f$ ($\omega=2\pi f$) given by:
  $$
  \widetilde G(\omega) \equiv \frac{1}{\sqrt{2\pi}}
  \int e^{i\omega t}G(t)\,dt \equiv
  \frac{1}{\Delta f}
  e^{i\omega t_0 -\frac{(\omega-\omega_0)^2}{2\Delta f^2}}
  $$
  where $G(t)$ is the current (not the dipole moment). In this formula, $\Delta f$
  is the `fwidth` of the source, $\omega_0$ is $2\pi$ times its `frequency,` and
  $t_0$ is the peak time discussed above. Note that this does not include any
  `amplitude` or `amp_func` factor that you specified for the source.

</div>

</div>


---
<a id="CustomSource"></a>

### CustomSource

```python
class CustomSource(SourceTime):
```

<div class="class_docstring" markdown="1">

A user-specified source function $f(t)$. You can also specify start/end times at which
point your current is set to zero whether or not your function is actually zero. These
are optional, but you must specify an `end_time` explicitly if you want `run`
functions like `until_after_sources` to work, since they need to know when your source
turns off. To use a custom source within an `EigenModeSource`, you must specify the
`center_frequency` parameter, since Meep does not know the frequency content of the
`CustomSource`. The resultant eigenmode is calculated at this frequency only. For a
demonstration of a [linear-chirped pulse](FAQ.md#how-do-i-create-a-chirped-pulse), see
[`examples/chirped_pulse.py`](https://github.com/NanoComp/meep/blob/master/python/examples/chirped_pulse.py).

</div>


<a id="CustomSource.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             src_func,
             start_time=-1e+20,
             end_time=1e+20,
             is_integrated=False,
             center_frequency=0,
             fwidth=0,
             **kwargs):
```

<div class="method_docstring" markdown="1">

Construct a `CustomSource`.

+ **`src_func` [`function`]** — The function $f(t)$ specifying the time-dependence
  of the source. It should take one argument (the time in Meep units) and return a
  complex number.

+ **`start_time` [`number`]** — The starting time for the source. Default is
  -10<sup>20</sup>: turn on at $t=-\infty$. Note, however, that the simulation
  normally starts at $t=0$ with zero fields as the initial condition, so there is
  implicitly a sharp turn-on at $t=0$ whether you specify it or not.

+ **`end_time` [`number`]** — The end time for the source. Default is
  10<sup>20</sup> (never turn off).

+ **`is_integrated` [`boolean`]** — If `True`, the source is the integral of the
  current (the [dipole
  moment](https://en.wikipedia.org/wiki/Electric_dipole_moment)) which is
  guaranteed to be zero after the current turns off. In practice, there is little
  difference between integrated and non-integrated sources *except* for
  [planewaves extending into
  PML](Perfectly_Matched_Layer.md#planewave-sources-extending-into-pml). Default
  is `False`.

+ **`center_frequency` [`number`]** — Optional center frequency so that the
  `CustomSource` can be used within an `EigenModeSource`. Defaults to 0.

+ **`fwidth` [`number`]** — Optional bandwidth in frequency units.
  Default is 0. For bandwidth-limited sources, this parameter is used to
  automatically determine the decimation factor of the time-series updates
  of the DFT fields monitors (if any).

</div>

</div>


---
<a id="FluxRegion"></a>

### FluxRegion

```python
class FluxRegion(object):
```

<div class="class_docstring" markdown="1">

A `FluxRegion` object is used with [`add_flux`](#flux-spectra) to specify a region in
which Meep should accumulate the appropriate Fourier-transformed fields in order to
compute a flux spectrum. It represents a region (volume, plane, line, or point) in
which to compute the integral of the Poynting vector of the Fourier-transformed
fields. `ModeRegion` is an alias for `FluxRegion` for use with `add_mode_monitor`.

Note that the flux is always computed in the *positive* coordinate direction, although
this can effectively be flipped by using a `weight` of -1.0. This is useful, for
example, if you want to compute the outward flux through a box, so that the sides of
the box add instead of subtract.

</div>


<a id="FluxRegion.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             center: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
             size: Union[meep.geom.Vector3, Tuple[float, ...]] = Vector3<0.0, 0.0, 0.0>,
             direction: int = -1,
             weight: float = 1.0,
             volume: Optional[meep.simulation.Volume] = None):
```

<div class="method_docstring" markdown="1">

Construct a `FluxRegion` object.

+ **`center` [`Vector3`]** — The center of the flux region (no default).

+ **`size` [`Vector3`]** — The size of the flux region along each of the coordinate
  axes. Default is `(0,0,0)`; a single point.

+ **`direction` [`direction` constant ]** — The direction in which to compute the
  flux (e.g. `mp.X`, `mp.Y`, etcetera). Default is `AUTOMATIC`, in which the
  direction is determined by taking the normal direction if the flux region is a
  plane (or a line, in 2d). If the normal direction is ambiguous (e.g. for a point
  or volume), then you *must* specify the `direction` explicitly (not doing so
  will lead to an error).

+ **`weight` [`complex`]** — A weight factor to multiply the flux by when it is
  computed. Default is 1.0.

+ **`volume` [`Volume`]** — A `meep.Volume` can be used to specify the flux region
  instead of a `center` and a `size`.

</div>

</div>


---
<a id="EnergyRegion"></a>

### EnergyRegion

```python
class EnergyRegion(FluxRegion):
```

<div class="class_docstring" markdown="1">

A region (volume, plane, line, or point) in which to compute the integral of the
energy density of the Fourier-transformed fields. Its properties are:

+ **`center` [`Vector3`]** — The center of the energy region (no default).

+ **`size` [`Vector3`]** — The size of the energy region along each of the coordinate
  axes. Default is (0,0,0): a single point.

+ **`weight` [`complex`]** — A weight factor to multiply the energy density by when it
  is computed. Default is 1.0.

</div>



---
<a id="ForceRegion"></a>

### ForceRegion

```python
class ForceRegion(FluxRegion):
```

<div class="class_docstring" markdown="1">

A region (volume, plane, line, or point) in which to compute the integral of the
stress tensor of the Fourier-transformed fields. Its properties are:

+ **`center` [ `Vector3` ]** — The center of the force region (no default).

+ **`size` [ `Vector3` ]** — The size of the force region along each of the coordinate
  axes. Default is `(0,0,0)` (a single point).

+ **`direction` [ `direction constant` ]** — The direction of the force that you wish
  to compute (e.g. `X`, `Y`, etcetera). Unlike `FluxRegion`, you must specify this
  explicitly, because there is not generally any relationship between the direction of
  the force and the orientation of the force region.

+ **`weight` [ `complex` ]** — A weight factor to multiply the force by when it is
  computed. Default is 1.0.

+ **`volume` [`Volume`]** — A `meep.Volume` can be used to specify the force region
  instead of a `center` and a `size`.

In most circumstances, you should define a set of `ForceRegion`s whose union is a
closed surface lying in vacuum and enclosing the object that is experiencing the
force.

</div>



---
<a id="Volume"></a>

### Volume

```python
class Volume(object):
```

<div class="class_docstring" markdown="1">

Many Meep functions require you to specify a volume in space, corresponding to the C++
type `meep::volume`. This class creates such a volume object, given the `center` and
`size` properties (just like e.g. a `Block` object). If the `size` is not specified,
it defaults to `(0,0,0)`, i.e. a single point. Any method that accepts such a volume
also accepts `center` and `size` keyword arguments. If these are specified instead of
the volume, the library will construct a volume for you. Alternatively, you can
specify a list of `Vector3` vertices using the `vertices` parameter. The `center` and
`size` will automatically be computed from this list.

</div>


<a id="Volume.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             center: Union[meep.geom.Vector3, Tuple[float, ...]] = Vector3<0.0, 0.0, 0.0>,
             size: Union[meep.geom.Vector3, Tuple[float, ...]] = Vector3<0.0, 0.0, 0.0>,
             dims: int = 2,
             is_cylindrical: bool = False,
             vertices: List[Union[meep.geom.Vector3, Tuple[float, ...]]] = []):
```

<div class="method_docstring" markdown="1">

Construct a Volume.

</div>

</div>


** Related function:**

<a id="get_center_and_size"></a>

```python
def get_center_and_size(vol):
```

<div class="function_docstring" markdown="1">

Utility function that takes a `meep::volume` `vol` and returns the center and size of
the volume as a tuple of `Vector3`.

</div>


---
<a id="Animate2D"></a>

### Animate2D

```python
class Animate2D(object):
```

<div class="class_docstring" markdown="1">

A class used to record the fields during timestepping (i.e., a [`run`](#run-functions)
function). The object is initialized prior to timestepping by specifying the field component.
The object can then be passed to any [step-function modifier](#step-function-modifiers).
For example, one can record the $E_z$ fields at every one time unit using:

```py
animate = mp.Animate2D(fields=mp.Ez,
                       realtime=True,
                       field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none'},
                       boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})

sim.run(mp.at_every(1,animate),until=25)
```

By default, the object saves each frame as a PNG image into memory (not disk). This is
typically more memory efficient than storing the actual fields. If the user sets the
`normalize` argument, then the object will save the actual field information as a
NumPy array to be normalized for post processing. The fields of a figure can also be
updated in realtime by setting the `realtime` flag. This does not work for
IPython/Jupyter notebooks, however.

Once the simulation is run, the animation can be output as an interactive JSHTML
object, an mp4, or a GIF.

Multiple `Animate2D` objects can be initialized and passed to the run function to
track different volume locations (using `mp.in_volume`) or field components.

</div>


<a id="Animate2D.__call__"></a>

<div class="class_members" markdown="1">

```python
def __call__(self,
             sim: meep.simulation.Simulation,
             todo: str):
```

<div class="method_docstring" markdown="1">

Call self as a function.

</div>

</div>


<a id="Animate2D.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             sim: Optional[meep.simulation.Simulation] = None,
             fields: Optional = None,
             f: Optional[matplotlib.figure.Figure] = None,
             realtime: bool = False,
             normalize: bool = False,
             plot_modifiers: Optional[list] = None,
             update_epsilon: bool = False,
             nb: bool = False,
             **customization_args):
```

<div class="method_docstring" markdown="1">

Construct an `Animate2D` object.

+ **`sim=None`** — Optional Simulation object (this has no effect, and is included for backwards compatibility).

+ **`fields=None`** — Optional Field component to record at each time instant.

+ **`f=None`** — Optional `matplotlib` figure object that the routine will update
  on each call. If not supplied, then a new one will be created upon
  initialization.

+ **`realtime=False`** — Whether or not to update a figure window in realtime as
  the simulation progresses. Disabled by default.

+ **`normalize=False`** — Records fields at each time step in memory in a NumPy
  array and then normalizes the result by dividing by the maximum field value at a
  single point in the cell over all the time snapshots.

+ **`plot_modifiers=None`** — A list of functions that can modify the figure's
  `axis` object. Each function modifier accepts a single argument, an `axis`
  object, and must return that same axis object. The following modifier changes
  the `xlabel`:

```py
  def mod1(ax):
      ax.set_xlabel('Testing')
      return ax

  plot_modifiers = [mod1]
```

+ **`update_epsilon=False`** — Redraw epsilon on each call. (Useful for topology optimization)

+ **`nb=False`** — For the animation work in a Jupyter notebook, set to True and use the cell magic:
    `%matplotlib ipympl`
+ **`**customization_args`** — Customization keyword arguments passed to
  `plot2D()` (i.e. `labels`, `eps_parameters`, `boundary_parameters`, etc.)

</div>

</div>


<a id="Animate2D.to_gif"></a>

<div class="class_members" markdown="1">

```python
def to_gif(self, fps: int, filename: str) -> None:
```

<div class="method_docstring" markdown="1">

Generates and outputs a GIF file of the animation with the filename, `filename`,
and the frame rate, `fps`. Note that GIFs are significantly larger than mp4 videos
since they don't use any compression. Artifacts are also common because the GIF
format only supports 256 colors from a _predefined_ color palette. Requires
`ffmpeg`.

</div>

</div>


<a id="Animate2D.to_jshtml"></a>

<div class="class_members" markdown="1">

```python
def to_jshtml(self,
              fps: int):
```

<div class="method_docstring" markdown="1">

Outputs an interactable JSHTML animation object that is embeddable in Jupyter
notebooks. The object is packaged with controls to manipulate the video's
playback. User must specify a frame rate `fps` in frames per second.

</div>

</div>


<a id="Animate2D.to_mp4"></a>

<div class="class_members" markdown="1">

```python
def to_mp4(self, fps: int, filename: str) -> None:
```

<div class="method_docstring" markdown="1">

Generates and outputs an mp4 video file of the animation with the filename,
`filename`, and the frame rate, `fps`. Default encoding is h264 with yuv420p
format. Requires `ffmpeg`.

</div>

</div>


---
<a id="Harminv"></a>

### Harminv

```python
class Harminv(object):
```

<div class="class_docstring" markdown="1">

Harminv is implemented as a class with a [`__call__`](#Harminv.__call__) method,
which allows it to be used as a step function that collects field data from a given
point and runs [Harminv](https://github.com/NanoComp/harminv) on that data to extract
the frequencies, decay rates, and other information.

See [`__init__`](#Harminv.__init__) for details about constructing a `Harminv`.

**Important:** normally, you should only use Harminv to analyze data *after the
sources are off*. Wrapping it in `after_sources(mp.Harminv(...))` is sufficient.

In particular, Harminv takes the time series $f(t)$ corresponding to the given field
component as a function of time and decomposes it (within the specified bandwidth) as:

$$f(t) = \sum_n a_n e^{-i\omega_n t}$$

The results are stored in the list `Harminv.modes`, which is a list of tuples holding
the frequency, amplitude, and error of the modes. Given one of these tuples (e.g.,
`first_mode = harminv_instance.modes[0]`), you can extract its various components:

+ **`freq`** — The real part of frequency ω (in the usual Meep 2πc units).

+ **`decay`** — The imaginary part of the frequency ω.

+ **`Q`** — The dimensionless lifetime, or quality factor defined as
  $-\mathrm{Re}\,\omega / 2 \mathrm{Im}\,\omega$.

+ **`amp`** — The complex amplitude $a$.

+ **`err`** — A crude measure of the error in the frequency (both real and imaginary).
  If the error is much larger than the imaginary part, for example, then you can't
  trust the $Q$ to be accurate. Note: this error is only the uncertainty in the signal
  processing, and tells you nothing about the errors from finite resolution, finite
  cell size, and so on.

For example, `[m.freq for m in harminv_instance.modes]` gives a list of the real parts
of the frequencies. Be sure to save a reference to the `Harminv` instance if you wish
to use the results after the simulation:

```py
sim = mp.Simulation(...)
h = mp.Harminv(...)
sim.run(mp.after_sources(h))
# do something with h.modes
```

</div>


<a id="Harminv.__call__"></a>

<div class="class_members" markdown="1">

```python
def __call__(self, sim, todo):
```

<div class="method_docstring" markdown="1">

Allows a Haminv instance to be used as a step function.

</div>

</div>


<a id="Harminv.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             c: int = None,
             pt: Union[meep.geom.Vector3, Tuple[float, ...]] = None,
             fcen: float = None,
             df: float = None,
             mxbands: Optional[int] = None):
```

<div class="method_docstring" markdown="1">

Construct a Harminv object.

A `Harminv` is a step function that collects data from the field component `c`
(e.g. $E_x$, etc.) at the given point `pt` (a `Vector3`). Then, at the end
of the run, it uses Harminv to look for modes in the given frequency range (center
`fcen` and width `df`), printing the results to standard output (prefixed by
`harminv:`) as comma-delimited text, and also storing them to the variable
`Harminv.modes`. The optional argument `mxbands` is the maximum number of modes to
search for. Defaults to 100.

</div>

</div>


---
<a id="Verbosity"></a>

### Verbosity

```python
class Verbosity(object):
```

<div class="class_docstring" markdown="1">

A class to help make accessing and setting the global verbosity level a bit
more pythonic. It manages one or more verbosity flags that are located in
the C/C++ libraries used by Meep.

The verbosity levels are:

* 0: minimal output
* 1: a little
* 2: a lot
* 3: debugging

An instance of `Verbosity` is created when meep is imported, and is
accessible as `meep.verbosity`. The `meep.mpb` package also has a verbosity
flag in its C library, and it can also be managed via the `Verbosity` class
after `meep.mpb` is imported.

Note that this class is a Singleton, meaning that each call to create a new
`Verbosity` actually gives you the same instance. The new C `verbosity`
flag will be added to a list of verbosity flags managed by this class.

The `Verbosity` instance can be used as a global verbosity controller, and
assignments to any instance of `Verbosity` will set the global verbosity
level for all library components. For example, this:

```python
meep.verbosity(2)
# or meep.verbosity.set(2) if you prefer being more explicit
```

will set all of the managed verbosity flags to level 2.

Each managed verbosity flag can also be accessed individually if desired.
Each time a new C/C++ library verbosity flag is added to this Python class a
new property is added which can be used to access that individual flag.
Currently the properties that are available are named simply `meep` and
`mpb`. This means that you can set two different verbosity levels like this:

```python
verbosity = meep.verbosity # not required, it's just to save some typing
verbosity.meep = 2
verbosity.mpb = 1
```

</div>


<a id="Verbosity.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self, cvar=None, name=None, initial_level=1):
```

<div class="method_docstring" markdown="1">

See `add_verbosity_var()`

</div>

</div>


<a id="Verbosity.__call__"></a>

<div class="class_members" markdown="1">

```python
def __call__(self, level):
```

<div class="method_docstring" markdown="1">

Convenience for setting the verbosity level. This lets you set the
global level by calling the instance like a function. For example, if
`verbosity` is an instance of this class, then its value can be changed
like this:

```
verbosity(0)
```

</div>

</div>


<a id="Verbosity.add_verbosity_var"></a>

<div class="class_members" markdown="1">

```python
def add_verbosity_var(self, cvar=None, name=None, initial_level=1):
```

<div class="method_docstring" markdown="1">

Add a new verbosity flag to be managed. `cvar` should be some object
that has a `verbosity` attribute, such as `meep.cvar` or `mpb.cvar`.

</div>

</div>


<a id="Verbosity.get"></a>

<div class="class_members" markdown="1">

```python
def get(self):
```

<div class="method_docstring" markdown="1">

Returns the current global verbosity level.

</div>

</div>


<a id="Verbosity.set"></a>

<div class="class_members" markdown="1">

```python
def set(self, level):
```

<div class="method_docstring" markdown="1">

Validates the range, and sets the global verbosity level. Returns the
former value.

</div>

</div>


---
<a id="BinaryPartition"></a>

### BinaryPartition

```python
class BinaryPartition(object):
```

<div class="class_docstring" markdown="1">

Binary tree class used for specifying a cell partition of arbitrary sized chunks for use as the
`chunk_layout` parameter of the `Simulation` class object.

</div>


<a id="BinaryPartition.__init__"></a>

<div class="class_members" markdown="1">

```python
def __init__(self,
             data=None,
             split_dir=None,
             split_pos=None,
             left=None,
             right=None,
             proc_id=None):
```

<div class="method_docstring" markdown="1">

The constructor accepts three separate groups of arguments: (1) `data`: a list of lists where each
list entry is either (a) a node defined as `[ (split_dir,split_pos), left, right ]` for which `split_dir`
and `split_pos` define the splitting direction (i.e., `mp.X`, `mp.Y`, `mp.Z`) and position (e.g., `3.5`,
`-4.2`, etc.) and `left` and `right` are the two branches (themselves `BinaryPartition` objects)
or (b) a leaf with integer value for the process ID `proc_id` in the range between 0 and number of processes
- 1 (inclusive), (2) a node defined using `split_dir`, `split_pos`, `left`, and `right`, or (3) a leaf with
`proc_id`. Note that the same process ID can be assigned to as many chunks as you want, which means that one
process timesteps multiple chunks. If you use fewer MPI processes, then the process ID is taken modulo the number
of processes.

</div>

</div>


<a id="BinaryPartition.print"></a>

<div class="class_members" markdown="1">

```python
def print(self):
```

<div class="method_docstring" markdown="1">

Pretty-prints the tree structure of the BinaryPartition object.

</div>

</div>


Miscellaneous Functions Reference
---------------------------------


<a id="interpolate"></a>

```python
def interpolate(n, nums):
```

<div class="function_docstring" markdown="1">

Given a list of numbers or `Vector3`s as `nums`, linearly interpolates between them to
add `n` new evenly-spaced values between each pair of consecutive values in the
original list.

</div>


#### Flux functions


<a id="get_flux_freqs"></a>

```python
def get_flux_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the frequencies that it is computing the
spectrum for.

</div>



<a id="get_fluxes"></a>

```python
def get_fluxes(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the current flux spectrum that it has
accumulated.

</div>



<a id="scale_flux_fields"></a>

```python
def scale_flux_fields(s, flux):
```

<div class="function_docstring" markdown="1">

Scale the Fourier-transformed fields in `flux` by the complex number `s`. e.g.
`load_minus_flux` is equivalent to `load_flux` followed by `scale_flux_fields` with
`s=-1`.

</div>



<a id="get_eigenmode_freqs"></a>

```python
def get_eigenmode_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a flux object, returns a list of the frequencies that it is computing the
spectrum for.

</div>



#### Energy Functions


<a id="get_energy_freqs"></a>

```python
def get_energy_freqs(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="get_electric_energy"></a>

```python
def get_electric_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
electric fields that it has accumulated.

</div>


<a id="get_magnetic_energy"></a>

```python
def get_magnetic_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
magnetic fields that it has accumulated.

</div>


<a id="get_total_energy"></a>

```python
def get_total_energy(f):
```

<div class="function_docstring" markdown="1">

Given an energy object, returns a list of the current energy density spectrum for the
total fields that it has accumulated.

</div>



#### Force Functions


<a id="get_force_freqs"></a>

```python
def get_force_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a force object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="get_forces"></a>

```python
def get_forces(f):
```

<div class="function_docstring" markdown="1">

Given a force object, returns a list of the current force spectrum that it has
accumulated.

</div>



#### LDOS Functions


<a id="Ldos"></a>

```python
def Ldos(*args):
def Ldos(fcen, df, nfreq, freq):
```

<div class="function_docstring" markdown="1">


Create an LDOS object with either frequency bandwidth `df` centered at `fcen` and
`nfreq` equally spaced frequency points or an array/list `freq` for arbitrarily spaced
frequencies. This can be passed to the `dft_ldos` step function below as a keyword
argument.

</div>


<a id="get_ldos_freqs"></a>

```python
def get_ldos_freqs(l):
```

<div class="function_docstring" markdown="1">

Given an LDOS object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="dft_ldos"></a>

```python
def dft_ldos(*args, **kwargs):
def dft_ldos(fcen=None, df=None, nfreq=None, freq=None, ldos=None):
```

<div class="function_docstring" markdown="1">


Compute the power spectrum of the sources (usually a single point dipole source),
normalized to correspond to the LDOS, in either a frequency bandwidth `df` centered at
`fcen` and `nfreq` equally spaced frequency points or an array/list `freq` for
arbitrarily spaced frequencies. One can also pass in an `Ldos` object as
`dft_ldos(ldos=my_Ldos)`.

The resulting spectrum is outputted as comma-delimited text, prefixed by `ldos:,`, and
is also stored in the `ldos_data` variable of the `Simulation` object after the `run`
is complete. The Fourier-transformed electric field and current source are stored in
the `ldos_Fdata` and `ldos_Jdata` of the `Simulation` object, respectively.

</div>



#### Near2Far Functions


<a id="get_near2far_freqs"></a>

```python
def get_near2far_freqs(f):
```

<div class="function_docstring" markdown="1">

Given a `near2far` object, returns a list of the frequencies that it is computing the
spectrum for.

</div>


<a id="scale_near2far_fields"></a>

```python
def scale_near2far_fields(s, near2far):
```

<div class="function_docstring" markdown="1">

Scale the Fourier-transformed fields in `near2far` by the complex number `s`. e.g.
`load_minus_near2far` is equivalent to `load_near2far` followed by
`scale_near2far_fields` with `s=-1`.

</div>



#### GDSII Functions


<a id="GDSII_layers"></a>

```python
def GDSII_layers(fname):
```

<div class="function_docstring" markdown="1">

Returns a list of integer-valued layer indices for the layers present in
the specified GDSII file.

```python
mp.GDSII_layers('python/examples/coupler.gds')
Out[2]: [0, 1, 2, 3, 4, 5, 31, 32]
```

</div>


<a id="GDSII_prisms"></a>

```python
def GDSII_prisms(material, fname, layer=-1, zmin=0.0, zmax=0.0):
```

<div class="function_docstring" markdown="1">

Returns a list of `GeometricObject`s with `material` (`mp.Medium`) on layer number
`layer` of a GDSII file `fname` with `zmin` and `zmax` (default 0).

</div>


<a id="GDSII_vol"></a>

```python
def GDSII_vol(fname, layer, zmin, zmax):
```

<div class="function_docstring" markdown="1">

Returns a `mp.Volume` read from a GDSII file `fname` on layer number `layer` with
`zmin` and `zmax` (default 0). This function is useful for creating a `FluxRegion`
from a GDSII file as follows:

```python
fr = mp.FluxRegion(volume=mp.GDSII_vol(fname, layer, zmin, zmax))
```

</div>



#### Run and Step Functions


<a id="stop_when_fields_decayed"></a>

```python
def stop_when_fields_decayed(dt=None, c=None, pt=None, decay_by=None):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
or `until_after_sources` parameter, that examines the component `c` (e.g. `meep.Ex`, etc.)
at the point `pt` (a `Vector3`) and keeps running until its absolute value *squared*
has decayed by at least `decay_by` from its maximum previous value. In particular, it
keeps incrementing the run time by `dt` (in Meep units) and checks the maximum value
over that time period &mdash; in this way, it won't be fooled just because the field
happens to go through zero at some instant.

Note that, if you make `decay_by` very small, you may need to increase the `cutoff`
property of your source(s), to decrease the amplitude of the small high-frequency
components that are excited when the source turns off. High frequencies near the
[Nyquist frequency](https://en.wikipedia.org/wiki/Nyquist_frequency) of the grid have
slow group velocities and are absorbed poorly by [PML](Perfectly_Matched_Layer.md).

</div>


<a id="stop_after_walltime"></a>

```python
def stop_after_walltime(t):
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
parameter. Stops the simulation after `t` seconds of wall time have passed.

</div>


<a id="stop_on_interrupt"></a>

```python
def stop_on_interrupt():
```

<div class="function_docstring" markdown="1">

Return a `condition` function, suitable for passing to `Simulation.run` as the `until`
parameter. Instead of terminating when receiving a SIGINT or SIGTERM signal from the
system, the simulation will abort time stepping and continue executing any code that
follows the `run` function (e.g., outputting fields).

</div>



#### Output Functions


<a id="output_epsilon"></a>

```python
def output_epsilon(sim=None, *step_func_args, **kwargs):
```

<div class="function_docstring" markdown="1">

Given a frequency `frequency`, (provided as a keyword argument) output $\varepsilon$ (relative
permittivity); for an anisotropic $\varepsilon$ tensor the output is the [harmonic
mean](https://en.wikipedia.org/wiki/Harmonic_mean) of the $\varepsilon$ eigenvalues. If
`frequency` is non-zero, the output is complex; otherwise it is the real,
frequency-independent part of $\varepsilon$ (the $\omega\to\infty$ limit).
When called as part of a [step function](Python_User_Interface.md#controlling-when-a-step-function-executes),
the `sim` argument specifying the `Simulation` object can be omitted, e.g.,
`sim.run(mp.at_beginning(mp.output_epsilon(frequency=1/0.7)),until=10)`.

</div>


<a id="output_mu"></a>

```python
def output_mu(sim=None, *step_func_args, **kwargs):
```

<div class="function_docstring" markdown="1">

Given a frequency `frequency`, (provided as a keyword argument) output $\mu$ (relative
permeability); for an anisotropic $\mu$ tensor the output is the [harmonic
mean](https://en.wikipedia.org/wiki/Harmonic_mean) of the $\mu$ eigenvalues. If
`frequency` is non-zero, the output is complex; otherwise it is the real,
frequency-independent part of $\mu$ (the $\omega\to\infty$ limit).
When called as part of a [step function](Python_User_Interface.md#controlling-when-a-step-function-executes),
the `sim` argument specifying the `Simulation` object can be omitted, e.g.,
`sim.run(mp.at_beginning(mp.output_mu(frequency=1/0.7)),until=10)`.

</div>


<a id="output_poynting"></a>

```python
def output_poynting(sim):
```

<div class="function_docstring" markdown="1">

Output the Poynting flux $\Re [\mathbf{E}^* \times \mathbf{H}]$. Note that you
might want to wrap this step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_hpwr"></a>

```python
def output_hpwr(sim):
```

<div class="function_docstring" markdown="1">

Output the magnetic-field energy density $\mathbf{H}^* \cdot \mathbf{B} / 2$

</div>


<a id="output_dpwr"></a>

```python
def output_dpwr(sim):
```

<div class="function_docstring" markdown="1">

Output the electric-field energy density $\mathbf{E}^* \cdot \mathbf{D} / 2$

</div>


<a id="output_tot_pwr"></a>

```python
def output_tot_pwr(sim):
```

<div class="function_docstring" markdown="1">

Output the total electric and magnetic energy density. Note that you might want to
wrap this step function in `synchronized_magnetic` to compute it more accurately. See
[Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_png"></a>

```python
def output_png(compnt, options, rm_h5=True):
```

<div class="function_docstring" markdown="1">

Output the given field component (e.g. `Ex`, etc.) as a
[PNG](https://en.wikipedia.org/wiki/PNG) image, by first outputting the HDF5 file,
then converting to PNG via
[h5topng](https://github.com/NanoComp/h5utils/blob/master/README.md), then deleting
the HDF5 file. The second argument is a string giving options to pass to h5topng (e.g.
`"-Zc bluered"`). See also [Tutorial/Basics/Output Tips and
Tricks](Python_Tutorials/Basics.md#output-tips-and-tricks).

It is often useful to use the h5topng `-C` or `-A` options to overlay the dielectric
function when outputting fields. To do this, you need to know the name of the
dielectric-function `.h5` file which must have been previously output by
`output_epsilon`. To make this easier, a built-in shell variable `$EPS` is provided
which refers to the last-output dielectric-function `.h5` file. So, for example
`output_png(mp.Ez,"-C $EPS")` will output the $E_z$ field and overlay the dielectric
contours.

By default, `output_png` deletes the `.h5` file when it is done. To preserve the `.h5`
file requires `output_png(component, h5topng_options, rm_h5=False)`.

</div>



<a id="output_hfield"></a>

```python
def output_hfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *h*, (magnetic) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_hfield_x"></a>

```python
def output_hfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_y"></a>

```python
def output_hfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_z"></a>

```python
def output_hfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_r"></a>

```python
def output_hfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *h* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_hfield_p"></a>

```python
def output_hfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *h* (magnetic). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>



<a id="output_bfield"></a>

```python
def output_bfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *b*, (magnetic) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_bfield_x"></a>

```python
def output_bfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_y"></a>

```python
def output_bfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_z"></a>

```python
def output_bfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_r"></a>

```python
def output_bfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *b* (magnetic). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_bfield_p"></a>

```python
def output_bfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *b* (magnetic). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_efield"></a>

```python
def output_efield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *e*, (electric) to an HDF5 file. That is,
the different components are stored as different datasets within the *same* file.

</div>


<a id="output_efield_x"></a>

```python
def output_efield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_y"></a>

```python
def output_efield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_z"></a>

```python
def output_efield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_r"></a>

```python
def output_efield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *e* (electric). If the field is complex, outputs
two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real and
imaginary parts, respectively.

</div>


<a id="output_efield_p"></a>

```python
def output_efield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *e* (electric). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_dfield"></a>

```python
def output_dfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *d*, (displacement) to an HDF5 file. That
is, the different components are stored as different datasets within the *same* file.

</div>


<a id="output_dfield_x"></a>

```python
def output_dfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_y"></a>

```python
def output_dfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_z"></a>

```python
def output_dfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_r"></a>

```python
def output_dfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_dfield_p"></a>

```python
def output_dfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *d* (displacement). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>



<a id="output_sfield"></a>

```python
def output_sfield(sim):
```

<div class="function_docstring" markdown="1">

Outputs *all* the components of the field *s*, (poynting flux) to an HDF5 file. That
is, the different components are stored as different datasets within the *same* file.
Note that you might want to wrap this step function in `synchronized_magnetic` to
compute it more accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>


<a id="output_sfield_x"></a>

```python
def output_sfield_x(sim):
```

<div class="function_docstring" markdown="1">

Output the $x$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_y"></a>

```python
def output_sfield_y(sim):
```

<div class="function_docstring" markdown="1">

Output the $y$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_z"></a>

```python
def output_sfield_z(sim):
```

<div class="function_docstring" markdown="1">

Output the $z$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_r"></a>

```python
def output_sfield_r(sim):
```

<div class="function_docstring" markdown="1">

Output the $r$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively.

</div>


<a id="output_sfield_p"></a>

```python
def output_sfield_p(sim):
```

<div class="function_docstring" markdown="1">

Output the $\phi$ component of the field *s* (poynting flux). If the field is complex,
outputs two datasets, e.g. `ex.r` and `ex.i`, within the same HDF5 file for the real
and imaginary parts, respectively. Note that for outputting the Poynting flux, you
might want to wrap the step function in `synchronized_magnetic` to compute it more
accurately. See [Synchronizing the Magnetic and Electric
Fields](Synchronizing_the_Magnetic_and_Electric_Fields.md).

</div>