1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
|
#include <algorithm>
#include <complex>
#include <cstdlib>
#include <cstddef>
#include <iostream>
#include "config.h"
#include "pympb.hpp"
#include "meep/mympi.hpp"
// If the MPB lib is not new enough to have the mpb_verbosity global then make
// one here to give the swig wrapper something to link with.
#if MPB_VERSION_MAJOR > 1 || (MPB_VERSION_MAJOR == 1 && MPB_VERSION_MINOR >= 11)
// do nothing, libmpb should have the mpb_verbosity symbol
#else
extern "C" int mpb_verbosity = 2;
#endif
// xyz_loop.h
// #ifndef HAVE_MPI
#define LOOP_XYZ(md) \
{ \
int n1 = md->nx, n2 = md->ny, n3 = md->nz, i1, i2, i3; \
for (i1 = 0; i1 < n1; ++i1) \
for (i2 = 0; i2 < n2; ++i2) \
for (i3 = 0; i3 < n3; ++i3) { \
int xyz_index = ((i1 * n2 + i2) * n3 + i3);
// #else /* HAVE_MPI */
// /* first two dimensions are transposed in MPI output: */
// #define LOOP_XYZ(md) \
// { \
// int n1 = md->nx, n2 = md->ny, n3 = md->nz, i1, i2_, i3; \
// int local_n2 = md->local_ny, local_y_start = md->local_y_start; \
// for (i2_ = 0; i2_ < local_n2; ++i2_) \
// for (i1 = 0; i1 < n1; ++i1) \
// for (i3 = 0; i3 < n3; ++i3) { \
// int i2 = i2_ + local_y_start; \ int xyz_index = ((i2_ * n1 + i1) * n3 + i3);
// #endif /* HAVE_MPI */
typedef mpb_real real; // needed for the CASSIGN macros below
// support version < 1.12 of MPB
#ifndef CASSIGN_CONJ_MULT
#define CASSIGN_CONJ_MULT(a, b, c) \
{ \
real bbbb_re = (b).re, bbbb_im = (b).im; \
real cccc_re = (c).re, cccc_im = (c).im; \
CASSIGN_SCALAR(a, bbbb_re *cccc_re + bbbb_im * cccc_im, \
bbbb_re * cccc_im - bbbb_im * cccc_re); \
}
#endif
// TODO: Support MPI
#define mpi_allreduce(sb, rb, n, ctype, t, op, comm) \
{ \
CHECK((sb) != (rb), "MPI_Allreduce doesn't work for sendbuf == recvbuf"); \
memcpy((rb), (sb), (n) * sizeof(ctype)); \
}
/* "in-place" Allreduce wrapper for reducing a single value */
#define mpi_allreduce_1(b, ctype, t, op, comm) \
{ \
ctype bbbb = *(b); \
mpi_allreduce(&bbbb, (b), 1, ctype, t, op, comm); \
}
#ifdef CHECK_DISABLE
#define CHECK(cond, s) // Do nothing
#else
#define CHECK(cond, s) \
if (!(cond)) { meep::abort(s "\n"); }
#endif
namespace py_mpb {
// TODO: Placeholder
int mpb_comm;
const double inf = 1.0e20;
// This is the function passed to `set_maxwell_dielectric`
static void dielectric_function(symmetric_matrix *eps, symmetric_matrix *eps_inv,
const mpb_real r[3], void *epsilon_data) {
mode_solver *ms = static_cast<mode_solver *>(epsilon_data);
meep_geom::material_type mat;
vector3 p;
// p needs to be in the lattice *unit* vector basis, while r is in the lattice
// vector basis. Also, shift origin to the center of the grid.
p.x = (r[0] - 0.5) * geometry_lattice.size.x;
p.y = (r[1] - 0.5) * geometry_lattice.size.y;
p.z = (r[2] - 0.5) * geometry_lattice.size.z;
// p = shift_to_unit_cell(p);
ms->get_material_pt(mat, p);
ms->material_epsmu(mat, eps, eps_inv, eps);
}
static int mean_epsilon_func(symmetric_matrix *meps, symmetric_matrix *meps_inv, mpb_real n[3],
mpb_real d1, mpb_real d2, mpb_real d3, mpb_real tol,
const mpb_real r[3], void *edata) {
mode_solver *ms = static_cast<mode_solver *>(edata);
return ms->mean_epsilon(meps, meps_inv, n, d1, d2, d3, tol, r);
}
/****** utils ******/
/* a couple of utilities to convert libctl data types to the data
types of the eigensolver & maxwell routines: */
void vector3_to_arr(mpb_real arr[3], vector3 v) {
arr[0] = v.x;
arr[1] = v.y;
arr[2] = v.z;
}
void matrix3x3_to_arr(mpb_real arr[3][3], matrix3x3 m) {
vector3_to_arr(arr[0], m.c0);
vector3_to_arr(arr[1], m.c1);
vector3_to_arr(arr[2], m.c2);
}
cnumber cscalar2cnumber(scalar_complex cs) { return make_cnumber(CSCALAR_RE(cs), CSCALAR_IM(cs)); }
cvector3 cscalar32cvector3(const scalar_complex *cs) {
cvector3 v;
v.x = cscalar2cnumber(cs[0]);
v.y = cscalar2cnumber(cs[1]);
v.z = cscalar2cnumber(cs[2]);
return v;
}
// Return a string describing the current parity, used for frequency and filename
// prefixes
const char *parity_string(maxwell_data *d) {
static char s[128];
strcpy(s, "");
if (d->parity & EVEN_Z_PARITY) { strcat(s, (d->nz == 1) ? "te" : "zeven"); }
else if (d->parity & ODD_Z_PARITY) { strcat(s, (d->nz == 1) ? "tm" : "zodd"); }
if (d->parity & EVEN_Y_PARITY) { strcat(s, "yeven"); }
else if (d->parity & ODD_Y_PARITY) { strcat(s, "yodd"); }
return s;
}
/* Extract the mean epsilon from the effective inverse dielectric tensor,
which contains two eigenvalues that correspond to the mean epsilon,
and one which corresponds to the harmonic mean. */
mpb_real mean_medium_from_matrix(const symmetric_matrix *eps_inv) {
mpb_real eps_eigs[3];
maxwell_sym_matrix_eigs(eps_eigs, eps_inv);
/* the harmonic mean should be the largest eigenvalue (smallest
epsilon), so we'll ignore it and average the other two: */
return 2.0 / (eps_eigs[0] + eps_eigs[1]);
}
/* When we are solving for a few bands at a time, we solve for the
upper bands by "deflation"--by continually orthogonalizing them
against the already-computed lower bands. (This constraint
commutes with the eigen-operator, of course, so all is well.) */
typedef struct {
evectmatrix Y; /* the vectors to orthogonalize against; Y must
itself be normalized (Yt B Y = 1) */
evectmatrix BY; /* B * Y */
int p; /* the number of columns of Y to orthogonalize against */
scalar *S; /* a matrix for storing the dot products; should have
at least p * X.p elements (see below for X) */
scalar *S2; /* a scratch matrix the same size as S */
} deflation_data;
extern "C" {
void blasglue_gemm(char transa, char transb, int m, int n, int k, mpb_real a, scalar *A, int fdA,
scalar *B, int fdB, mpb_real b, scalar *C, int fdC);
}
static void deflation_constraint(evectmatrix X, void *data) {
deflation_data *d = (deflation_data *)data;
CHECK(X.n == d->BY.n && d->BY.p >= d->p && d->Y.p >= d->p, "invalid dimensions");
/* compute (1 - Y (BY)t) X = (1 - Y Yt B) X
= projection of X so that Yt B X = 0 */
/* (Sigh...call the BLAS functions directly since we are not
using all the columns of BY...evectmatrix is not set up for
this case.) */
/* compute S = Xt BY (i.e. all the dot products): */
blasglue_gemm('C', 'N', X.p, d->p, X.n, 1.0, X.data, X.p, d->BY.data, d->BY.p, 0.0, d->S2, d->p);
// TODO
// #if HAVE_MPI
// MPI_Allreduce(d->S2, d->S, d->p * X.p * SCALAR_NUMVALS, SCALAR_MPI_TYPE,
// MPI_SUM, mpb_comm);
// #else
memcpy(d->S, d->S2, sizeof(mpb_real) * d->p * X.p * SCALAR_NUMVALS);
// #endif
/* compute X = X - Y*St = (1 - BY Yt B) X */
blasglue_gemm('N', 'C', X.n, X.p, d->p, -1.0, d->Y.data, d->Y.p, d->S, d->p, 1.0, X.data, X.p);
}
/******* mode_solver *******/
mode_solver::mode_solver(int num_bands, double resolution[3], lattice lat, double tolerance,
int mesh_size, meep_geom::material_data *_default_material,
bool deterministic, double target_freq, int dims, bool verbose,
bool periodicity, double flops, bool negative_epsilon_ok,
std::string epsilon_input_file, std::string mu_input_file, bool force_mu,
bool use_simple_preconditioner, vector3 grid_size, int eigensolver_nwork,
int eigensolver_block_size)
: num_bands(num_bands), resolution{resolution[0], resolution[1], resolution[2]},
target_freq(target_freq), tolerance(tolerance), mesh_size(mesh_size),
negative_epsilon_ok(negative_epsilon_ok), epsilon_input_file(epsilon_input_file),
mu_input_file(mu_input_file), force_mu(force_mu),
use_simple_preconditioner(use_simple_preconditioner), grid_size(grid_size), nwork_alloc(0),
eigensolver_nwork(eigensolver_nwork), eigensolver_block_size(eigensolver_block_size),
last_parity(-2), iterations(0), eigensolver_flops(flops), geometry_list{},
geometry_tree(NULL), vol(0), R{}, G{}, mdata(NULL), mtdata(NULL),
curfield_band(0), H{}, Hblock{}, muinvH{}, W{}, freqs(num_bands), verbose(verbose),
deterministic(deterministic), kpoint_index(0), curfield(NULL), curfield_type('-'), eps(true) {
// See geom-ctl-io-defaults.c in libctl
geometry_lattice = lat;
dimensions = dims;
ensure_periodicity = periodicity;
#ifndef WITH_HERMITIAN_EPSILON
meep_geom::medium_struct *m;
if (meep_geom::is_medium(_default_material, &m)) { m->check_offdiag_im_zero_or_abort(); }
#else
(void)_default_material;
#endif
}
mode_solver::~mode_solver() {
destroy_maxwell_data(mdata);
destroy_maxwell_target_data(mtdata);
destroy_geom_box_tree(geometry_tree);
clear_geometry_list();
destroy_evectmatrix(H);
for (int i = 0; i < nwork_alloc; ++i) {
destroy_evectmatrix(W[i]);
}
if (Hblock.data != H.data) { destroy_evectmatrix(Hblock); }
if (muinvH.data != H.data) { destroy_evectmatrix(muinvH); }
}
int mode_solver::mean_epsilon(symmetric_matrix *meps, symmetric_matrix *meps_inv, mpb_real n[3],
mpb_real d1, mpb_real d2, mpb_real d3, mpb_real tol,
const mpb_real r[3]) {
const geometric_object *o1 = 0;
const geometric_object *o2 = 0;
geom_box pixel;
double fill;
meep_geom::material_type mat1;
meep_geom::material_type mat2;
int id1 = -1;
int id2 = -1;
const int num_neighbors[3] = {3, 5, 9};
const int neighbors[3][9][3] = {{{0, 0, 0},
{-1, 0, 0},
{1, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}},
{{0, 0, 0},
{-1, -1, 0},
{1, 1, 0},
{-1, 1, 0},
{1, -1, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}},
{{0, 0, 0},
{1, 1, 1},
{1, 1, -1},
{1, -1, 1},
{1, -1, -1},
{-1, 1, 1},
{-1, 1, -1},
{-1, -1, 1},
{-1, -1, -1}}};
/* p needs to be in the lattice *unit* vector basis, while r is
in the lattice vector basis. Also, shift origin to the center
of the grid. */
vector3 p = {(r[0] - 0.5) * geometry_lattice.size.x, (r[1] - 0.5) * geometry_lattice.size.y,
(r[2] - 0.5) * geometry_lattice.size.z};
d1 *= geometry_lattice.size.x * 0.5;
d2 *= geometry_lattice.size.y * 0.5;
d3 *= geometry_lattice.size.z * 0.5;
vector3 shiftby1;
vector3 shiftby2;
vector3 normal;
for (int i = 0; i < num_neighbors[dimensions - 1]; ++i) {
const geometric_object *o;
vector3 q, z, shiftby;
int id;
q.x = p.x + neighbors[dimensions - 1][i][0] * d1;
q.y = p.y + neighbors[dimensions - 1][i][1] * d2;
q.z = p.z + neighbors[dimensions - 1][i][2] * d3;
geometry_lattice.size.x = geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x;
geometry_lattice.size.y = geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y;
geometry_lattice.size.z = geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z;
z = shift_to_unit_cell(q);
geometry_lattice.size.x = geometry_lattice.size.x == 1e-20 ? 0 : geometry_lattice.size.x;
geometry_lattice.size.y = geometry_lattice.size.y == 1e-20 ? 0 : geometry_lattice.size.y;
geometry_lattice.size.z = geometry_lattice.size.z == 1e-20 ? 0 : geometry_lattice.size.z;
o = object_of_point_in_tree(z, geometry_tree, &shiftby, &id);
shiftby = vector3_plus(shiftby, vector3_minus(q, z));
if ((id == id1 && vector3_equal(shiftby, shiftby1)) ||
(id == id2 && vector3_equal(shiftby, shiftby2))) {
continue;
}
meep_geom::material_type mat = (meep_geom::material_type)default_material;
if (o) {
meep_geom::material_data *md = (meep_geom::material_data *)o->material;
if (md->which_subclass != meep_geom::material_data::MATERIAL_FILE) { mat = md; }
}
if (id1 == -1) {
o1 = o;
shiftby1 = shiftby;
id1 = id;
mat1 = mat;
}
else if (id2 == -1 || ((id >= id1 && id >= id2) &&
(id1 == id2 || meep_geom::material_type_equal(mat1, mat2)))) {
o2 = o;
shiftby2 = shiftby;
id2 = id;
mat2 = mat;
}
else if (!(id1 < id2 && (id1 == id || meep_geom::material_type_equal(mat1, mat))) &&
!(id2 < id1 && (id2 == id || meep_geom::material_type_equal(mat2, mat)))) {
return 0; /* too many nearby objects for analysis */
}
}
CHECK(id1 > -1, "bug in object_of_point_in_tree?");
if (id2 == -1) { /* only one nearby object/material */
id2 = id1;
o2 = o1;
mat2 = mat1;
shiftby2 = shiftby1;
}
bool o1_is_var = o1 && meep_geom::is_variable(o1->material);
bool o2_is_var = o2 && meep_geom::is_variable(o2->material);
bool default_is_var_or_file =
meep_geom::is_variable(default_material) || meep_geom::is_file(default_material);
if (o1_is_var || o2_is_var ||
(default_is_var_or_file &&
(!o1 || !o2 || meep_geom::is_file(o1->material) || meep_geom::is_file(o2->material)))) {
return 0; /* arbitrary material functions are non-analyzable */
}
material_epsmu(mat1, meps, meps_inv, eps);
/* check for trivial case of only one object/material */
if (id1 == id2 || meep_geom::material_type_equal(mat1, mat2)) {
n[0] = n[1] = n[2] = 0;
return 1;
}
if (id1 > id2) { normal = normal_to_fixed_object(vector3_minus(p, shiftby1), *o1); }
else { normal = normal_to_fixed_object(vector3_minus(p, shiftby2), *o2); }
n[0] = normal.x / (geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x);
n[1] = normal.y / (geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y);
n[2] = normal.z / (geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z);
pixel.low.x = p.x - d1;
pixel.high.x = p.x + d1;
pixel.low.y = p.y - d2;
pixel.high.y = p.y + d2;
pixel.low.z = p.z - d3;
pixel.high.z = p.z + d3;
tol = tol > 0.01 ? 0.01 : tol;
if (id1 > id2) {
pixel.low = vector3_minus(pixel.low, shiftby1);
pixel.high = vector3_minus(pixel.high, shiftby1);
fill = box_overlap_with_object(pixel, *o1, tol, 100 / tol);
}
else {
pixel.low = vector3_minus(pixel.low, shiftby2);
pixel.high = vector3_minus(pixel.high, shiftby2);
fill = 1 - box_overlap_with_object(pixel, *o2, tol, 100 / tol);
}
{
symmetric_matrix eps2, epsinv2;
symmetric_matrix eps1, delta;
double Rot[3][3], norm, n0, n1, n2;
material_epsmu(mat2, &eps2, &epsinv2, eps);
eps1 = *meps;
/* make Cartesian orthonormal frame relative to interface */
n0 = R[0][0] * n[0] + R[1][0] * n[1] + R[2][0] * n[2];
n1 = R[0][1] * n[0] + R[1][1] * n[1] + R[2][1] * n[2];
n2 = R[0][2] * n[0] + R[1][2] * n[1] + R[2][2] * n[2];
norm = sqrt(n0 * n0 + n1 * n1 + n2 * n2);
if (norm == 0.0) { return 0; }
norm = 1.0 / norm;
Rot[0][0] = n0 = n0 * norm;
Rot[1][0] = n1 = n1 * norm;
Rot[2][0] = n2 = n2 * norm;
if (fabs(n0) > 1e-2 || fabs(n1) > 1e-2) { /* (z x n) */
Rot[0][2] = n1;
Rot[1][2] = -n0;
Rot[2][2] = 0;
}
else { /* n is ~ parallel to z direction, use (x x n) instead */
Rot[0][2] = 0;
Rot[1][2] = -n2;
Rot[2][2] = n1;
}
{ /* normalize second column */
double s = Rot[0][2] * Rot[0][2] + Rot[1][2] * Rot[1][2] + Rot[2][2] * Rot[2][2];
s = 1.0 / sqrt(s);
Rot[0][2] *= s;
Rot[1][2] *= s;
Rot[2][2] *= s;
}
/* 1st column is 2nd column x 0th column */
Rot[0][1] = Rot[1][2] * Rot[2][0] - Rot[2][2] * Rot[1][0];
Rot[1][1] = Rot[2][2] * Rot[0][0] - Rot[0][2] * Rot[2][0];
Rot[2][1] = Rot[0][2] * Rot[1][0] - Rot[1][2] * Rot[0][0];
/* rotate epsilon tensors to surface parallel/perpendicular axes */
maxwell_sym_matrix_rotate(&eps1, &eps1, Rot);
maxwell_sym_matrix_rotate(&eps2, &eps2, Rot);
#define AVG (fill * (EXPR(eps1)) + (1 - fill) * (EXPR(eps2)))
#define EXPR(eps) (-1 / eps.m00)
delta.m00 = AVG;
#undef EXPR
#define EXPR(eps) (eps.m11 - ESCALAR_NORMSQR(eps.m01) / eps.m00)
delta.m11 = AVG;
#undef EXPR
#define EXPR(eps) (eps.m22 - ESCALAR_NORMSQR(eps.m02) / eps.m00)
delta.m22 = AVG;
#undef EXPR
#define EXPR(eps) (ESCALAR_RE(eps.m01) / eps.m00)
ESCALAR_RE(delta.m01) = AVG;
#undef EXPR
#define EXPR(eps) (ESCALAR_RE(eps.m02) / eps.m00)
ESCALAR_RE(delta.m02) = AVG;
#undef EXPR
#define EXPR(eps) (ESCALAR_RE(eps.m12) - ESCALAR_MULT_CONJ_RE(eps.m02, eps.m01) / eps.m00)
ESCALAR_RE(delta.m12) = AVG;
#undef EXPR
#ifdef WITH_HERMITIAN_EPSILON
#define EXPR(eps) (ESCALAR_IM(eps.m01) / eps.m00)
ESCALAR_IM(delta.m01) = AVG;
#undef EXPR
#define EXPR(eps) (ESCALAR_IM(eps.m02) / eps.m00)
ESCALAR_IM(delta.m02) = AVG;
#undef EXPR
#define EXPR(eps) (ESCALAR_IM(eps.m12) - ESCALAR_MULT_CONJ_IM(eps.m02, eps.m01) / eps.m00)
ESCALAR_IM(delta.m12) = AVG;
#undef EXPR
#endif /* WITH_HERMITIAN_EPSILON */
meps->m00 = -1 / delta.m00;
meps->m11 = delta.m11 - ESCALAR_NORMSQR(delta.m01) / delta.m00;
meps->m22 = delta.m22 - ESCALAR_NORMSQR(delta.m02) / delta.m00;
ASSIGN_ESCALAR(meps->m01, -ESCALAR_RE(delta.m01) / delta.m00,
-ESCALAR_IM(delta.m01) / delta.m00);
ASSIGN_ESCALAR(meps->m02, -ESCALAR_RE(delta.m02) / delta.m00,
-ESCALAR_IM(delta.m02) / delta.m00);
ASSIGN_ESCALAR(meps->m12,
ESCALAR_RE(delta.m12) - ESCALAR_MULT_CONJ_RE(delta.m02, delta.m01) / delta.m00,
ESCALAR_IM(delta.m12) - ESCALAR_MULT_CONJ_IM(delta.m02, delta.m01) / delta.m00);
#define SWAP(a, b) \
{ \
double xxx = a; \
a = b; \
b = xxx; \
}
/* invert rotation matrix = transpose */
SWAP(Rot[0][1], Rot[1][0]);
SWAP(Rot[0][2], Rot[2][0]);
SWAP(Rot[2][1], Rot[1][2]);
maxwell_sym_matrix_rotate(meps, meps, Rot); /* rotate back */
#undef SWAP
#ifdef DEBUG
CHECK(negative_epsilon_ok || maxwell_sym_matrix_positive_definite(meps),
"negative mean epsilon from Kottke algorithm");
#endif
}
return 1;
}
void mode_solver::material_epsmu(meep_geom::material_type material, symmetric_matrix *epsmu,
symmetric_matrix *epsmu_inv, bool eps) {
meep_geom::material_data *md = material;
#ifndef WITH_HERMITIAN_EPSILON
if (md->which_subclass == meep_geom::material_data::MATERIAL_USER ||
md->which_subclass == meep_geom::material_data::MATERIAL_FILE) {
md->medium.check_offdiag_im_zero_or_abort();
}
#endif
if (eps) {
switch (md->which_subclass) {
case meep_geom::material_data::MEDIUM:
case meep_geom::material_data::MATERIAL_FILE:
case meep_geom::material_data::MATERIAL_USER:
epsmu->m00 = md->medium.epsilon_diag.x;
epsmu->m11 = md->medium.epsilon_diag.y;
epsmu->m22 = md->medium.epsilon_diag.z;
#ifdef WITH_HERMITIAN_EPSILON
epsmu->m01.re = md->medium.epsilon_offdiag.x.re;
epsmu->m01.im = md->medium.epsilon_offdiag.x.im;
epsmu->m02.re = md->medium.epsilon_offdiag.y.re;
epsmu->m02.im = md->medium.epsilon_offdiag.y.im;
epsmu->m12.re = md->medium.epsilon_offdiag.z.re;
epsmu->m12.im = md->medium.epsilon_offdiag.z.im;
#else
epsmu->m01 = md->medium.epsilon_offdiag.x.re;
epsmu->m02 = md->medium.epsilon_offdiag.y.re;
epsmu->m12 = md->medium.epsilon_offdiag.z.re;
#endif
maxwell_sym_matrix_invert(epsmu_inv, epsmu);
break;
case meep_geom::material_data::PERFECT_METAL:
epsmu->m00 = -inf;
epsmu->m11 = -inf;
epsmu->m22 = -inf;
#ifdef WITH_HERMITIAN_EPSILON
epsmu->m01.re = 0.0;
epsmu->m01.im = 0.0;
epsmu->m02.re = 0.0;
epsmu->m02.im = 0.0;
epsmu->m12.re = 0.0;
epsmu->m12.im = 0.0;
epsmu_inv->m01.re = 0.0;
epsmu_inv->m01.im = 0.0;
epsmu_inv->m02.re = 0.0;
epsmu_inv->m02.im = 0.0;
epsmu_inv->m12.re = 0.0;
epsmu_inv->m12.im = 0.0;
#else
epsmu->m01 = 0.0;
epsmu->m02 = 0.0;
epsmu->m12 = 0.0;
epsmu_inv->m01 = 0.0;
epsmu_inv->m02 = 0.0;
epsmu_inv->m12 = 0.0;
#endif
epsmu_inv->m00 = -0.0;
epsmu_inv->m11 = -0.0;
epsmu_inv->m22 = -0.0;
break;
default: meep::abort("Unknown material type");
}
}
else {
switch (md->which_subclass) {
case meep_geom::material_data::MEDIUM:
case meep_geom::material_data::MATERIAL_FILE:
case meep_geom::material_data::MATERIAL_USER:
epsmu->m00 = md->medium.mu_diag.x;
epsmu->m11 = md->medium.mu_diag.y;
epsmu->m22 = md->medium.mu_diag.z;
#ifdef WITH_HERMITIAN_EPSILON
epsmu->m01.re = md->medium.mu_offdiag.x.re;
epsmu->m01.im = md->medium.mu_offdiag.x.im;
epsmu->m02.re = md->medium.mu_offdiag.y.re;
epsmu->m02.im = md->medium.mu_offdiag.y.im;
epsmu->m12.re = md->medium.mu_offdiag.z.re;
epsmu->m12.im = md->medium.mu_offdiag.z.im;
#else
epsmu->m01 = md->medium.mu_offdiag.x.re;
epsmu->m02 = md->medium.mu_offdiag.y.re;
epsmu->m12 = md->medium.mu_offdiag.z.re;
#endif
maxwell_sym_matrix_invert(epsmu_inv, epsmu);
break;
case meep_geom::material_data::PERFECT_METAL:
epsmu->m00 = 1.0;
epsmu->m11 = 1.0;
epsmu->m22 = 1.0;
epsmu_inv->m00 = 1.0;
epsmu_inv->m11 = 1.0;
epsmu_inv->m22 = 1.0;
#ifdef WITH_HERMITIAN_EPSILON
epsmu->m01.re = 0.0;
epsmu->m01.im = 0.0;
epsmu->m02.re = 0.0;
epsmu->m02.im = 0.0;
epsmu->m12.re = 0.0;
epsmu->m12.im = 0.0;
epsmu_inv->m01.re = 0.0;
epsmu_inv->m01.im = 0.0;
epsmu_inv->m02.re = 0.0;
epsmu_inv->m02.im = 0.0;
epsmu_inv->m12.re = 0.0;
epsmu_inv->m12.im = 0.0;
#else
epsmu->m01 = 0.0;
epsmu->m02 = 0.0;
epsmu->m12 = 0.0;
epsmu_inv->m01 = 0.0;
epsmu_inv->m02 = 0.0;
epsmu_inv->m12 = 0.0;
#endif
break;
default: meep::abort("unknown material type");
}
}
}
void mode_solver::get_material_pt(meep_geom::material_type &material, vector3 p) {
boolean inobject;
material = (meep_geom::material_type)material_of_unshifted_point_in_tree_inobject(
p, geometry_tree, &inobject);
meep_geom::material_data *md = material;
switch (md->which_subclass) {
// material read from file: interpolate to get properties at r
case meep_geom::material_data::MATERIAL_FILE:
if (md->epsilon_data) { meep_geom::epsilon_file_material(md, p); }
else { material = (meep_geom::material_type)default_material; }
return;
// material specified by user-supplied function: call user
// function to get properties at r.
// Note that we initialize the medium to vacuum, so that
// the user's function only needs to fill in whatever is
// different from vacuum.
case meep_geom::material_data::MATERIAL_USER:
md->medium = meep_geom::medium_struct();
md->user_func(p, md->user_data, &(md->medium));
return;
// position-independent material or metal: there is nothing to do
case meep_geom::material_data::MEDIUM:
case meep_geom::material_data::PERFECT_METAL: return;
default: meep::abort("unknown material type");
}
}
bool mode_solver::using_mu() { return mdata && mdata->mu_inv != NULL; }
void mode_solver::init(int p, bool reset_fields, geometric_object_list *geometry,
meep_geom::material_data *_default_material) {
int have_old_fields = 0;
set_default_material(_default_material);
n[0] = grid_size.x;
n[1] = grid_size.y;
n[2] = grid_size.z;
if (target_freq != 0.0 && mpb_verbosity > 0) {
meep::master_printf("Target frequency is %g\n", target_freq);
}
int true_rank = n[2] > 1 ? 3 : (n[1] > 1 ? 2 : 1);
if (true_rank < dimensions) { dimensions = true_rank; }
else if (true_rank > dimensions) {
if (mpb_verbosity > 0)
meep::master_printf("WARNING: rank of grid is > dimensions.\n"
" setting extra grid dims. to 1.\n");
// force extra dims to be 1
if (dimensions <= 2) { n[2] = 1; }
if (dimensions <= 1) { n[1] = 1; }
}
if (mpb_verbosity > 0) {
meep::master_printf("Working in %d dimensions.\n", dimensions);
meep::master_printf("Grid size is %d x %d x %d.\n", n[0], n[1], n[2]);
}
int block_size;
if (eigensolver_block_size != 0 && eigensolver_block_size < num_bands) {
block_size = eigensolver_block_size;
if (block_size < 0) {
// Guess a block_size near -block_size, chosen so that all blocks are nearly equal in size
block_size = (num_bands - block_size - 1) / (-block_size);
block_size = (num_bands + block_size - 1) / block_size;
}
if (mpb_verbosity > 0) meep::master_printf("Solving for %d bands at a time.\n", block_size);
}
else { block_size = num_bands; }
if (mdata) {
if (n[0] == mdata->nx && n[1] == mdata->ny && n[2] == mdata->nz &&
block_size == Hblock.alloc_p && num_bands == H.p &&
eigensolver_nwork + (mdata->mu_inv != NULL) == nwork_alloc) {
have_old_fields = 1;
}
else {
destroy_evectmatrix(H);
for (int i = 0; i < nwork_alloc; ++i) {
destroy_evectmatrix(W[i]);
}
if (Hblock.data != H.data) { destroy_evectmatrix(Hblock); }
if (muinvH.data != H.data) { destroy_evectmatrix(muinvH); }
}
destroy_maxwell_target_data(mtdata);
mtdata = NULL;
destroy_maxwell_data(mdata);
mdata = NULL;
curfield_reset();
}
else { srand(time(NULL)); }
if (deterministic) {
// seed should be the same for each run, although
// it should be different for each process.
// TODO: MPI
// int rank = meep::my_rank();
srand(314159); // * (rank + 1));
}
if (mpb_verbosity > 0) meep::master_printf("Creating Maxwell data...\n");
mdata = create_maxwell_data(n[0], n[1], n[2], &local_N, &N_start, &alloc_N, block_size,
NUM_FFT_BANDS);
if (target_freq != 0.0) { mtdata = create_maxwell_target_data(mdata, target_freq); }
init_epsilon(geometry);
if (check_maxwell_dielectric(mdata, 0)) { meep::abort("invalid dielectric function for MPB"); }
if (!have_old_fields) {
if (mpb_verbosity > 0) meep::master_printf("Allocating fields...\n");
int N = n[0] * n[1] * n[2];
int c = 2;
H = create_evectmatrix(N, c, num_bands, local_N, N_start, alloc_N);
nwork_alloc = eigensolver_nwork + (mdata->mu_inv != NULL);
for (int i = 0; i < nwork_alloc; ++i) {
W[i] = create_evectmatrix(N, c, block_size, local_N, N_start, alloc_N);
}
if (block_size < num_bands) {
Hblock = create_evectmatrix(N, c, block_size, local_N, N_start, alloc_N);
}
else { Hblock = H; }
if (using_mu() && block_size < num_bands) {
muinvH = create_evectmatrix(N, c, num_bands, local_N, N_start, alloc_N);
}
else { muinvH = H; }
}
set_parity(p);
if (!have_old_fields || reset_fields) { randomize_fields(); }
evectmatrix_flops = eigensolver_flops;
}
void mode_solver::init_epsilon(geometric_object_list *geometry_in) {
// Persist geometry data and move it out of the input argument.
clear_geometry_list();
if (geometry_in->num_items && geometry_in->items) {
geometry_list.items = geometry_in->items;
geometry_list.num_items = geometry_in->num_items;
geometry_in->items = NULL;
geometry_in->num_items = 0;
}
mpb_real no_size_x = geometry_lattice.size.x == 0 ? 1 : geometry_lattice.size.x;
mpb_real no_size_y = geometry_lattice.size.y == 0 ? 1 : geometry_lattice.size.y;
mpb_real no_size_z = geometry_lattice.size.z == 0 ? 1 : geometry_lattice.size.z;
if (mpb_verbosity > 0) meep::master_printf("Mesh size is %d.\n", mesh_size);
Rm.c0 = vector3_scale(no_size_x, geometry_lattice.basis.c0);
Rm.c1 = vector3_scale(no_size_y, geometry_lattice.basis.c1);
Rm.c2 = vector3_scale(no_size_z, geometry_lattice.basis.c2);
if (mpb_verbosity > 0) {
meep::master_printf("Lattice vectors:\n");
meep::master_printf(" (%g, %g, %g)\n", Rm.c0.x, Rm.c0.y, Rm.c0.z);
meep::master_printf(" (%g, %g, %g)\n", Rm.c1.x, Rm.c1.y, Rm.c1.z);
meep::master_printf(" (%g, %g, %g)\n", Rm.c2.x, Rm.c2.y, Rm.c2.z);
}
vol = fabs(matrix3x3_determinant(Rm));
if (mpb_verbosity > 0) meep::master_printf("Cell volume = %g\n", vol);
Gm = matrix3x3_inverse(matrix3x3_transpose(Rm));
if (mpb_verbosity > 0) {
meep::master_printf("Reciprocal lattice vectors (/ 2 pi):\n");
meep::master_printf(" (%g, %g, %g)\n", Gm.c0.x, Gm.c0.y, Gm.c0.z);
meep::master_printf(" (%g, %g, %g)\n", Gm.c1.x, Gm.c1.y, Gm.c1.z);
meep::master_printf(" (%g, %g, %g)\n", Gm.c2.x, Gm.c2.y, Gm.c2.z);
}
matrix3x3_to_arr(R, Rm);
matrix3x3_to_arr(G, Gm);
geom_fix_object_list(geometry_list);
if (mpb_verbosity > 0) meep::master_printf("Geometric objects:\n");
if (meep::am_master()) {
for (int i = 0; i < geometry_list.num_items; ++i) {
#ifndef WITH_HERMITIAN_EPSILON
meep_geom::medium_struct *mm;
if (meep_geom::is_medium(geometry_list.items[i].material, &mm)) {
mm->check_offdiag_im_zero_or_abort();
}
#endif
if (mpb_verbosity > 0) display_geometric_object_info(5, geometry_list.items[i]);
// meep_geom::medium_struct *mm;
// if (meep_geom::is_medium(geometry.items[i].material, &mm)) {
// meep::master_printf("%*sdielectric constant epsilon diagonal = (%g,%g,%g)\n", 5 + 5, "",
// mm->epsilon_diag.x, mm->epsilon_diag.y, mm->epsilon_diag.z);
// }
}
}
{
// Replace 0 with 1e-20 for no size
vector3 tmp_size;
tmp_size.x = geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x;
tmp_size.y = geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y;
tmp_size.z = geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z;
geom_box b0;
b0.low = vector3_plus(geometry_center, vector3_scale(-0.5, tmp_size));
b0.high = vector3_plus(geometry_center, vector3_scale(0.5, tmp_size));
/* pad tree boundaries to allow for sub-pixel averaging */
b0.low.x -= tmp_size.x / mdata->nx;
b0.low.y -= tmp_size.y / mdata->ny;
b0.low.z -= tmp_size.z / mdata->nz;
b0.high.x += tmp_size.x / mdata->nx;
b0.high.y += tmp_size.y / mdata->ny;
b0.high.z += tmp_size.z / mdata->nz;
destroy_geom_box_tree(geometry_tree);
geometry_tree = create_geom_box_tree0(geometry_list, b0);
}
if (verbose && meep::am_master()) {
if (mpb_verbosity > 0) meep::master_printf("Geometry object bounding box tree:\n");
display_geom_box_tree(5, geometry_tree);
}
int tree_depth;
int tree_nobjects;
geom_box_tree_stats(geometry_tree, &tree_depth, &tree_nobjects);
if (mpb_verbosity > 0)
meep::master_printf("Geometric object tree has depth %d and %d object nodes"
" (vs. %d actual objects)\n",
tree_depth, tree_nobjects, geometry_list.num_items);
// restricted_tree = geometry_tree;
reset_epsilon(&geometry_list);
}
void mode_solver::reset_epsilon(geometric_object_list *geometry) {
int mesh[3] = {
mesh_size,
(dimensions > 1) ? mesh_size : 1,
(dimensions > 2) ? mesh_size : 1,
};
if (!epsilon_input_file.empty()) {
meep_geom::material_type material = meep_geom::make_file_material(epsilon_input_file.c_str());
set_default_material(material);
material_free(material);
}
// TODO: support mu_input_file
// if (!mu_input_file.empty()) {
// }
if (mpb_verbosity > 0) meep::master_printf("Initializing epsilon function...\n");
set_maxwell_dielectric(mdata, mesh, R, G, dielectric_function, mean_epsilon_func,
static_cast<void *>(this));
if (has_mu(geometry)) {
if (mpb_verbosity > 0) meep::master_printf("Initializing mu function...\n");
eps = false;
set_maxwell_mu(mdata, mesh, R, G, dielectric_function, mean_epsilon_func,
static_cast<void *>(this));
eps = true;
}
}
bool mode_solver::has_mu(geometric_object_list *geometry) {
// TODO: mu_file_func
if (material_has_mu(default_material) || force_mu) { return true; }
for (int i = 0; i < geometry->num_items; ++i) {
if (material_has_mu(geometry->items[i].material)) { return true; }
}
return false;
}
bool mode_solver::material_has_mu(void *mt) {
meep_geom::material_type mat = (meep_geom::material_type)mt;
meep_geom::medium_struct *m = &mat->medium;
if (mat->which_subclass != meep_geom::material_data::PERFECT_METAL) {
bool has_nonzero_mu_offdiag = false;
#ifdef WITH_HERMITIAN_EPSILON
if (m->mu_offdiag.x.re != 0 || m->mu_offdiag.x.im != 0 || m->mu_offdiag.y.re != 0 ||
m->mu_offdiag.y.im != 0 || m->mu_offdiag.z.re != 0 || m->mu_offdiag.z.im != 0) {
has_nonzero_mu_offdiag = true;
}
#else
if (m->mu_offdiag.x.re != 0 || m->mu_offdiag.y.re != 0 || m->mu_offdiag.z.re != 0) {
has_nonzero_mu_offdiag = true;
}
#endif
if (m->mu_diag.x != 1 || m->mu_diag.y != 1 || m->mu_diag.z != 1 || has_nonzero_mu_offdiag) {
return true;
}
}
return false;
}
void mode_solver::set_parity(integer p) {
if (!mdata) {
meep::master_fprintf(stderr, "init must be called before set-parity!\n");
return;
}
if (p == -1) { p = last_parity < 0 ? NO_PARITY : last_parity; }
set_maxwell_data_parity(mdata, p);
if (mdata->parity != p) {
meep::master_fprintf(stderr, "k vector incompatible with parity\n");
exit(EXIT_FAILURE);
}
if (mpb_verbosity > 0)
meep::master_printf("Solving for band polarization: %s.\n", parity_string(mdata));
last_parity = p;
set_kpoint_index(0); /* reset index */
}
void mode_solver::set_num_bands(int nb) {
num_bands = nb;
freqs.resize(nb);
}
int mode_solver::get_kpoint_index() { return kpoint_index; }
void mode_solver::set_kpoint_index(int i) { kpoint_index = i; }
void mode_solver::randomize_fields() {
if (!mdata) { return; }
if (mpb_verbosity > 0) meep::master_printf("Initializing fields to random numbers...\n");
for (int i = 0; i < H.n * H.p; ++i) {
ASSIGN_SCALAR(H.data[i], rand() * 1.0 / RAND_MAX, rand() * 1.0 / RAND_MAX);
}
}
void mode_solver::solve_kpoint(vector3 kvector) {
// if we get too close to singular k==0 point, just set k=0 exploit our
// special handling of this k
if (vector3_norm(kvector) < 1e-10) { kvector.x = kvector.y = kvector.z = 0; }
if (mpb_verbosity > 0)
meep::master_printf("solve_kpoint (%g,%g,%g):\n", kvector.x, kvector.y, kvector.z);
curfield_reset();
if (num_bands == 0) {
if (mpb_verbosity > 0) meep::master_printf(" num-bands is zero, not solving for any bands\n");
return;
}
if (!mdata) {
meep::master_fprintf(stderr, "init must be called before solve_kpoint!\n");
return;
}
// If this is the first k point, print out a header line for the frequency
// grep data.
if (mpb_verbosity > 0) {
if (!kpoint_index && meep::am_master()) {
meep::master_printf("%sfreqs:, k index, k1, k2, k3, kmag/2pi", parity_string(mdata));
for (int i = 0; i < num_bands; ++i) {
meep::master_printf(", %s%sband %d", parity_string(mdata),
mdata->parity == NO_PARITY ? "" : " ", i + 1);
}
meep::master_printf("\n");
}
}
cur_kvector = kvector;
mpb_real k[3];
vector3_to_arr(k, kvector);
update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
std::vector<mpb_real> eigvals(num_bands);
// TODO: Get flags from python
int flags = EIGS_DEFAULT_FLAGS;
if (verbose || mpb_verbosity > 0) { flags |= EIGS_VERBOSE; }
// Constant (zero frequency) bands at k=0 are handled specially, so remove
// them from the solutions for the eigensolver.
int ib0;
if (mdata->zero_k && !mtdata) {
ib0 = maxwell_zero_k_num_const_bands(H, mdata);
for (int in = 0; in < H.n; ++in) {
for (int ip = 0; ip < H.p - ib0; ++ip) {
H.data[in * H.p + ip] = H.data[in * H.p + ip + ib0];
}
}
evectmatrix_resize(&H, H.p - ib0, 1);
}
else { ib0 = 0; /* solve for all bands */ }
// Set up deflation data.
deflation_data deflation;
if (muinvH.data != Hblock.data) {
deflation.Y = H;
deflation.BY = muinvH.data != H.data ? muinvH : H;
deflation.p = 0;
deflation.S = (scalar *)malloc(sizeof(scalar) * H.p * Hblock.p);
deflation.S2 = (scalar *)malloc(sizeof(scalar) * H.p * Hblock.p);
}
int total_iters = 0;
for (int ib = ib0; ib < num_bands; ib += Hblock.alloc_p) {
evectconstraint_chain *constraints;
int num_iters;
// Don't solve for too many bands if the block size doesn't divide the number
// of bands.
if (ib + mdata->num_bands > num_bands) {
maxwell_set_num_bands(mdata, num_bands - ib);
for (int i = 0; i < nwork_alloc; ++i) {
evectmatrix_resize(&W[i], num_bands - ib, 0);
}
evectmatrix_resize(&Hblock, num_bands - ib, 0);
}
if (mpb_verbosity > 0)
meep::master_printf("Solving for bands %d to %d...\n", ib + 1, ib + Hblock.p);
constraints = NULL;
constraints = evect_add_constraint(constraints, maxwell_parity_constraint, (void *)mdata);
if (mdata->zero_k) {
constraints = evect_add_constraint(constraints, maxwell_zero_k_constraint, (void *)mdata);
}
if (Hblock.data != H.data) { /* initialize fields of block from H */
for (int in = 0; in < Hblock.n; ++in) {
for (int ip = 0; ip < Hblock.p; ++ip) {
Hblock.data[in * Hblock.p + ip] = H.data[in * H.p + ip + (ib - ib0)];
}
}
deflation.p = ib - ib0;
if (deflation.p > 0) {
if (deflation.BY.data != H.data) {
evectmatrix_resize(&deflation.BY, deflation.p, 0);
maxwell_muinv_operator(H, deflation.BY, (void *)mdata, 1, deflation.BY);
}
constraints = evect_add_constraint(constraints, deflation_constraint, &deflation);
}
}
if (mtdata) { /* solving for bands near a target frequency */
CHECK(mdata->mu_inv == NULL, "targeted solver doesn't handle mu");
eigensolver(Hblock, eigvals.data() + ib, maxwell_target_operator, (void *)mtdata, NULL, NULL,
use_simple_preconditioner ? maxwell_target_preconditioner
: maxwell_target_preconditioner2,
(void *)mtdata, evectconstraint_chain_func, (void *)constraints, W, nwork_alloc,
tolerance, &num_iters, flags);
// now, diagonalize the real Maxwell operator in the solution subspace to
// get the true eigenvalues and eigenvectors
CHECK(nwork_alloc >= 2, "not enough workspace");
eigensolver_get_eigenvals(Hblock, eigvals.data() + ib, maxwell_operator, mdata, W[0], W[1]);
}
else {
eigensolver(Hblock, eigvals.data() + ib, maxwell_operator, (void *)mdata,
mdata->mu_inv ? maxwell_muinv_operator : NULL, (void *)mdata,
use_simple_preconditioner ? maxwell_preconditioner : maxwell_preconditioner2,
(void *)mdata, evectconstraint_chain_func, (void *)constraints, W, nwork_alloc,
tolerance, &num_iters, flags);
}
if (Hblock.data != H.data) { /* save solutions of current block */
for (int in = 0; in < Hblock.n; ++in) {
for (int ip = 0; ip < Hblock.p; ++ip) {
H.data[in * H.p + ip + (ib - ib0)] = Hblock.data[in * Hblock.p + ip];
}
}
}
evect_destroy_constraints(constraints);
if (mpb_verbosity > 0)
meep::master_printf("Finished solving for bands %d to %d after %d iterations.\n", ib + 1,
ib + Hblock.p, num_iters);
total_iters += num_iters * Hblock.p;
}
if (num_bands - ib0 > Hblock.alloc_p && mpb_verbosity > 0) {
meep::master_printf("Finished k-point with %g mean iterations/band.\n",
total_iters * 1.0 / num_bands);
}
// Manually put in constant (zero-frequency) solutions for k=0.
if (mdata->zero_k && !mtdata) {
evectmatrix_resize(&H, H.alloc_p, 1);
for (int in = 0; in < H.n; ++in) {
for (int ip = H.p - ib0 - 1; ip >= 0; --ip) {
H.data[in * H.p + ip + ib0] = H.data[in * H.p + ip];
}
}
maxwell_zero_k_set_const_bands(H, mdata);
for (int ib = 0; ib < ib0; ++ib) {
eigvals[ib] = 0;
}
}
/* Reset scratch matrix sizes: */
evectmatrix_resize(&Hblock, Hblock.alloc_p, 0);
for (int i = 0; i < nwork_alloc; ++i) {
evectmatrix_resize(&W[i], W[i].alloc_p, 0);
}
maxwell_set_num_bands(mdata, Hblock.alloc_p);
/* Destroy deflation data: */
if (H.data != Hblock.data) {
free(deflation.S2);
free(deflation.S);
}
iterations = total_iters; /* iterations output variable */
set_kpoint_index(kpoint_index + 1);
if (mpb_verbosity > 0)
meep::master_printf("%sfreqs:, %d, %g, %g, %g, %g", parity_string(mdata), kpoint_index,
(double)k[0], (double)k[1], (double)k[2],
vector3_norm(matrix3x3_vector3_mult(Gm, kvector)));
for (int i = 0; i < num_bands; ++i) {
freqs[i] = negative_epsilon_ok ? eigvals[i] : sqrt(eigvals[i]);
if (mpb_verbosity > 0) meep::master_printf(", %g", freqs[i]);
}
if (mpb_verbosity > 0) meep::master_printf("\n");
eigensolver_flops = evectmatrix_flops;
}
/* get the epsilon function, and compute some statistics */
void mode_solver::get_epsilon() {
mpb_real eps_mean = 0;
mpb_real eps_inv_mean = 0;
mpb_real eps_high = -1e20;
mpb_real eps_low = 1e20;
int fill_count = 0;
if (!mdata) {
meep::master_fprintf(stderr, "init-params must be called before get-epsilon!\n");
return;
}
curfield = (scalar_complex *)mdata->fft_data;
mpb_real *epsilon = (mpb_real *)curfield;
curfield_band = 0;
curfield_type = epsilon_CURFIELD_TYPE;
/* get epsilon. Recall that we actually have an inverse
dielectric tensor at each point; define an average index by
the inverse of the average eigenvalue of the 1/eps tensor.
i.e. 3/(trace 1/eps). */
int N = mdata->fft_output_size;
for (int i = 0; i < N; ++i) {
if (mdata->eps_inv == NULL) { epsilon[i] = 1.0; }
else { epsilon[i] = mean_medium_from_matrix(mdata->eps_inv + i); }
if (epsilon[i] < eps_low) { eps_low = epsilon[i]; }
if (epsilon[i] > eps_high) { eps_high = epsilon[i]; }
eps_mean += epsilon[i];
eps_inv_mean += 1 / epsilon[i];
if (epsilon[i] > 1.0001) { ++fill_count; }
}
mpi_allreduce_1(&eps_mean, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
mpi_allreduce_1(&eps_inv_mean, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
mpi_allreduce_1(&eps_low, mpb_real, SCALAR_MPI_TYPE, MPI_MIN, mpb_comm);
mpi_allreduce_1(&eps_high, mpb_real, SCALAR_MPI_TYPE, MPI_MAX, mpb_comm);
mpi_allreduce_1(&fill_count, int, MPI_INT, MPI_SUM, mpb_comm);
N = mdata->nx * mdata->ny * mdata->nz;
eps_mean /= N;
eps_inv_mean = N / eps_inv_mean;
if (mpb_verbosity > 0)
meep::master_printf("epsilon: %g-%g, mean %g, harm. mean %g, %g%% > 1, %g%% \"fill\"\n",
eps_low, eps_high, eps_mean, eps_inv_mean, (100.0 * fill_count) / N,
eps_high == eps_low ? 100.0
: 100.0 * (eps_mean - eps_low) / (eps_high - eps_low));
}
/* get the mu function, and compute some statistics */
void mode_solver::get_mu() {
mpb_real eps_mean = 0;
mpb_real mu_inv_mean = 0;
mpb_real eps_high = -1e20;
mpb_real eps_low = 1e20;
int fill_count = 0;
if (!mdata) {
meep::master_fprintf(stderr, "mode_solver.init must be called before get-mu!\n");
return;
}
curfield = (scalar_complex *)mdata->fft_data;
mpb_real *mu = (mpb_real *)curfield;
curfield_band = 0;
curfield_type = mu_CURFIELD_TYPE;
/* get mu. Recall that we actually have an inverse
dielectric tensor at each point; define an average index by
the inverse of the average eigenvalue of the 1/eps tensor.
i.e. 3/(trace 1/eps). */
int N = mdata->fft_output_size;
for (int i = 0; i < N; ++i) {
if (mdata->mu_inv == NULL) { mu[i] = 1.0; }
else { mu[i] = mean_medium_from_matrix(mdata->mu_inv + i); }
if (mu[i] < eps_low) { eps_low = mu[i]; }
if (mu[i] > eps_high) { eps_high = mu[i]; }
eps_mean += mu[i];
mu_inv_mean += 1 / mu[i];
if (mu[i] > 1.0001) { ++fill_count; }
}
mpi_allreduce_1(&eps_mean, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
mpi_allreduce_1(&mu_inv_mean, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
mpi_allreduce_1(&eps_low, mpb_real, SCALAR_MPI_TYPE, MPI_MIN, mpb_comm);
mpi_allreduce_1(&eps_high, mpb_real, SCALAR_MPI_TYPE, MPI_MAX, mpb_comm);
mpi_allreduce_1(&fill_count, int, MPI_INT, MPI_SUM, mpb_comm);
N = mdata->nx * mdata->ny * mdata->nz;
eps_mean /= N;
mu_inv_mean = N / mu_inv_mean;
if (mpb_verbosity > 0)
meep::master_printf("mu: %g-%g, mean %g, harm. mean %g, %g%% > 1, %g%% \"fill\"\n", eps_low,
eps_high, eps_mean, mu_inv_mean, (100.0 * fill_count) / N,
eps_high == eps_low ? 100.0
: 100.0 * (eps_mean - eps_low) / (eps_high - eps_low));
}
void mode_solver::curfield_reset() {
curfield = NULL;
curfield_type = '-';
}
/* get the specified component of the dielectric tensor,
or the inverse tensor if inv != 0 */
void mode_solver::get_epsilon_tensor(int c1, int c2, int imag, int inv) {
int conj = 0, offset = 0;
curfield_type = '-'; /* only used internally, for now */
mpb_real *epsilon = (mpb_real *)mdata->fft_data;
int N = mdata->fft_output_size;
switch (c1 * 3 + c2) {
case 0: offset = offsetof(symmetric_matrix, m00); break;
case 1: offset = offsetof(symmetric_matrix, m01); break;
case 2: offset = offsetof(symmetric_matrix, m02); break;
case 3:
offset = offsetof(symmetric_matrix, m01); /* = conj(m10) */
conj = imag;
break;
case 4: offset = offsetof(symmetric_matrix, m11); break;
case 5: offset = offsetof(symmetric_matrix, m12); break;
case 6:
offset = offsetof(symmetric_matrix, m02); /* = conj(m20) */
conj = imag;
break;
case 7:
offset = offsetof(symmetric_matrix, m12); /* = conj(m21) */
conj = imag;
break;
case 8: offset = offsetof(symmetric_matrix, m22); break;
}
#ifdef WITH_HERMITIAN_EPSILON
if (c1 != c2 && imag) offset += offsetof(scalar_complex, im);
#endif
for (int i = 0; i < N; ++i) {
if (inv) { epsilon[i] = *((mpb_real *)(((char *)&mdata->eps_inv[i]) + offset)); }
else {
symmetric_matrix eps;
maxwell_sym_matrix_invert(&eps, &mdata->eps_inv[i]);
epsilon[i] = *((mpb_real *)(((char *)&eps) + offset));
}
if (conj) epsilon[i] = -epsilon[i];
}
}
std::vector<mpb_real> mode_solver::get_freqs() { return freqs; }
size_t mode_solver::get_field_size() { return mdata ? mdata->fft_output_size * 3 : 0; }
void mode_solver::get_efield(int band) {
get_dfield(band);
get_efield_from_dfield();
}
void mode_solver::get_efield_from_dfield() {
if (!curfield || curfield_type != 'd') {
meep::master_fprintf(stderr, "get_dfield must be called before get-efield-from-dfield!\n");
return;
}
maxwell_compute_e_from_d(mdata, curfield, 1);
curfield_type = 'e';
}
void mode_solver::get_dfield(int band) {
if (!kpoint_index) {
meep::master_fprintf(stderr, "solve_kpoint must be called before get_dfield\n");
return;
}
if (band < 1 || band > H.p) {
meep::master_fprintf(stderr, "Must have 1 <= band index <= num_bands (%d)\n", H.p);
return;
}
curfield = (scalar_complex *)mdata->fft_data;
curfield_band = band;
curfield_type = 'd';
if (mdata->mu_inv == NULL) { maxwell_compute_d_from_H(mdata, H, curfield, band - 1, 1); }
else {
evectmatrix_resize(&W[0], 1, 0);
maxwell_compute_H_from_B(mdata, H, W[0], curfield, band - 1, 0, 1);
maxwell_compute_d_from_H(mdata, W[0], curfield, 0, 1);
evectmatrix_resize(&W[0], W[0].alloc_p, 0);
}
// Here, we correct for the fact that compute_d_from_H actually computes just
// (k+G) x H, whereas the actual D field is i/omega i(k+G) x H...so, there is
// an added factor of -1/omega.
// We also divide by the cell volume so that the integral of H*B or of D*E is
// unity. (From the eigensolver + FFT, they are initially normalized to sum to
// nx*ny*nz.)
double scale;
int N = mdata->fft_output_size;
if (freqs[band - 1] != 0.0) { scale = -1.0 / freqs[band - 1]; }
else
scale = -1.0; /* arbitrary */
scale /= sqrt(vol);
for (int i = 0; i < N * 3; ++i) {
curfield[i].re *= scale;
curfield[i].im *= scale;
}
}
void mode_solver::get_hfield(int band) {
if (!kpoint_index) {
meep::master_fprintf(stderr, "solve_kpoint must be called before get_dfield\n");
return;
}
if (band < 1 || band > H.p) {
meep::master_fprintf(stderr, "Must have 1 <= band index <= num_bands (%d)\n", H.p);
return;
}
curfield = (scalar_complex *)mdata->fft_data;
curfield_band = band;
curfield_type = 'h';
if (mdata->mu_inv == NULL)
maxwell_compute_h_from_H(mdata, H, curfield, band - 1, 1);
else {
evectmatrix_resize(&W[0], 1, 0);
maxwell_compute_H_from_B(mdata, H, W[0], curfield, band - 1, 0, 1);
maxwell_compute_h_from_H(mdata, W[0], curfield, 0, 1);
evectmatrix_resize(&W[0], W[0].alloc_p, 0);
}
// Divide by the cell volume so that the integral of H*B or of D*E is unity.
// (From the eigensolver + FFT, they are initially normalized to sum to
// nx*ny*nz.)
double scale;
scale = 1.0 / sqrt(vol);
int N = mdata->fft_output_size;
for (int i = 0; i < N * 3; ++i) {
curfield[i].re *= scale;
curfield[i].im *= scale;
}
}
void mode_solver::get_bfield(int band) {
if (!kpoint_index) {
meep::master_fprintf(stderr, "solve_kpoint must be called before get_dfield\n");
return;
}
if (band < 1 || band > H.p) {
meep::master_fprintf(stderr, "Must have 1 <= band index <= num_bands (%d)\n", H.p);
return;
}
curfield = (scalar_complex *)mdata->fft_data;
curfield_band = band;
curfield_type = 'b';
maxwell_compute_h_from_H(mdata, H, curfield, band - 1, 1);
// Divide by the cell volume so that the integral of H*B or of D*E is unity.
// (From the eigensolver + FFT, they are initially normalized to sum to nx*ny*nz.) */
double scale;
scale = 1.0 / sqrt(vol);
int N = mdata->fft_output_size;
for (int i = 0; i < N * 3; ++i) {
curfield[i].re *= scale;
curfield[i].im *= scale;
}
}
char mode_solver::get_curfield_type() { return curfield_type; }
void mode_solver::set_curfield_type(char t) { curfield_type = t; }
std::string mode_solver::get_parity_string() {
std::string s(parity_string(mdata));
return s;
}
std::vector<int> mode_solver::get_dims() {
std::vector<int> dims;
if (mdata->nx > 1) { dims.push_back(mdata->nx); }
if (mdata->ny > 1) { dims.push_back(mdata->ny); }
if (mdata->nz > 1) { dims.push_back(mdata->nz); }
return dims;
}
void mode_solver::set_grid_size(vector3 gs) {
grid_size.x = gs.x;
grid_size.y = gs.y;
grid_size.z = gs.z;
}
int mode_solver::get_libctl_dimensions() { return dimensions; }
void mode_solver::set_libctl_dimensions(int val) { dimensions = val; }
bool mode_solver::get_libctl_ensure_periodicity() { return ensure_periodicity; }
void mode_solver::set_libctl_ensure_periodicity(bool val) { ensure_periodicity = val; }
void mode_solver::set_libctl_geometry_lattice(lattice val) { geometry_lattice = val; }
void mode_solver::get_curfield(double *data, int size) {
mpb_real *p = (mpb_real *)curfield;
for (int i = 0; i < size; ++i) {
data[i] = p[i];
}
}
void mode_solver::get_curfield_cmplx(std::complex<mpb_real> *cdata, int size) {
scalar_complex *p = (scalar_complex *)curfield;
for (int i = 0; i < size; ++i) {
cdata[i] = std::complex<mpb_real>(p[i].re, p[i].im);
}
}
void mode_solver::set_curfield(double *data, int size) {
mpb_real *p = (mpb_real *)curfield;
for (int i = 0; i < size; ++i) {
p[i] = data[i];
}
}
void mode_solver::set_curfield_cmplx(std::complex<mpb_real> *cdata, int size) {
scalar_complex *p = (scalar_complex *)curfield;
for (int i = 0; i < size; ++i) {
scalar_complex s = {cdata[i].real(), cdata[i].imag()};
p[i] = s;
}
}
// internal function for compute_field_energy, below
double mode_solver::compute_field_energy_internal(mpb_real comp_sum[6]) {
mpb_real comp_sum2[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
mpb_real energy_sum = 0.0;
mpb_real *energy_density = (mpb_real *)curfield;
int N = mdata->fft_output_size;
for (int i = 0; i < N; ++i) {
scalar_complex field[3];
mpb_real comp_sqr0, comp_sqr1, comp_sqr2, comp_sqr3, comp_sqr4, comp_sqr5;
/* energy is either |curfield|^2 / mu or |curfield|^2 / epsilon,
depending upon whether it is B or D. */
if (curfield_type == 'd') {
assign_symmatrix_vector(field, mdata->eps_inv[i], curfield + 3 * i);
}
else if (curfield_type == 'b' && mdata->mu_inv != NULL) {
assign_symmatrix_vector(field, mdata->mu_inv[i], curfield + 3 * i);
}
else {
field[0] = curfield[3 * i];
field[1] = curfield[3 * i + 1];
field[2] = curfield[3 * i + 2];
}
comp_sum2[0] += comp_sqr0 = field[0].re * curfield[3 * i].re;
comp_sum2[1] += comp_sqr1 = field[0].im * curfield[3 * i].im;
comp_sum2[2] += comp_sqr2 = field[1].re * curfield[3 * i + 1].re;
comp_sum2[3] += comp_sqr3 = field[1].im * curfield[3 * i + 1].im;
comp_sum2[4] += comp_sqr4 = field[2].re * curfield[3 * i + 2].re;
comp_sum2[5] += comp_sqr5 = field[2].im * curfield[3 * i + 2].im;
/* Note: here, we write to energy_density[i]; this is
safe, even though energy_density is aliased to curfield,
since energy_density[i] is guaranteed to come at or before
curfield[i] (which we are now done with). */
energy_sum += energy_density[i] =
comp_sqr0 + comp_sqr1 + comp_sqr2 + comp_sqr3 + comp_sqr4 + comp_sqr5;
}
mpi_allreduce_1(&energy_sum, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
mpi_allreduce(comp_sum2, comp_sum, 6, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
// remember that we now have energy density; denoted by capital D/H
curfield_type = toupper(curfield_type);
return energy_sum;
}
void mode_solver::clear_geometry_list() {
if (geometry_list.num_items && geometry_list.items) {
for (int i = 0; i < geometry_list.num_items; ++i) {
material_free((meep_geom::material_data *)geometry_list.items[i].material);
geometric_object_destroy(geometry_list.items[i]);
}
delete[] geometry_list.items;
geometry_list.items = NULL;
geometry_list.num_items = 0;
}
}
/* Replace curfield (either d or h) with the scalar energy density function,
normalized to one. While we're at it, compute some statistics about
the relative strength of different field components. Also return
the integral of the energy density, which should be unity. */
std::vector<mpb_real> mode_solver::compute_field_energy() {
std::vector<mpb_real> retval;
if (!curfield || !strchr("dhb", curfield_type)) {
meep::master_fprintf(stderr, "The D or H field must be loaded first.\n");
return retval;
}
else if (curfield_type == 'h' && mdata->mu_inv != NULL) {
meep::master_fprintf(stderr, "B, not H, must be loaded if we have mu.\n");
return retval;
}
mpb_real comp_sum[6];
mpb_real energy_sum = compute_field_energy_internal(comp_sum);
if (mpb_verbosity > 0)
meep::master_printf("%c-energy-components:, %d, %d", curfield_type, kpoint_index,
curfield_band);
for (int i = 0; i < 6; ++i) {
comp_sum[i] /= (energy_sum == 0 ? 1 : energy_sum);
if (i % 2 == 1 && mpb_verbosity > 0) {
meep::master_printf(", %g", comp_sum[i] + comp_sum[i - 1]);
}
}
if (mpb_verbosity > 0) meep::master_printf("\n");
/* The return value is a list of 7 items: the total energy,
followed by the 6 elements of the comp_sum array (the fraction
of the energy in the real/imag. parts of each field component). */
retval.push_back(energy_sum * vol / H.N);
for (int i = 0; i < 6; ++i) {
retval.push_back(comp_sum[i]);
}
return retval;
}
std::vector<mpb_real> mode_solver::get_output_k() {
std::vector<mpb_real> output_k;
output_k.push_back(R[0][0] * mdata->current_k[0] + R[0][1] * mdata->current_k[1] +
R[0][2] * mdata->current_k[2]);
output_k.push_back(R[1][0] * mdata->current_k[0] + R[1][1] * mdata->current_k[1] +
R[1][2] * mdata->current_k[2]);
output_k.push_back(R[2][0] * mdata->current_k[0] + R[2][1] * mdata->current_k[1] +
R[2][2] * mdata->current_k[2]);
return output_k;
}
mpb_real mode_solver::get_val(int ix, int iy, int iz, int nx, int ny, int nz, int last_dim_size,
mpb_real *data, int stride, int conjugate) {
// #ifndef SCALAR_COMPLEX
// CHECK(0, "get-*-point not yet implemented for mpbi!");
// #endif
// #ifdef HAVE_MPI
// CHECK(0, "get-*-point not yet implemented for MPI!");
// #endif
(void)nx;
(void)last_dim_size;
(void)conjugate;
return data[(((ix * ny) + iy) * nz + iz) * stride];
}
mpb_real mode_solver::interp_val(vector3 p, int nx, int ny, int nz, int last_dim_size,
mpb_real *data, int stride, int conjugate) {
double ipart;
mpb_real rx, ry, rz, dx, dy, dz;
int x, y, z, x2, y2, z2;
mpb_real latx = geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x;
mpb_real laty = geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y;
mpb_real latz = geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z;
rx = modf(p.x / latx + 0.5, &ipart);
if (rx < 0) rx += 1;
ry = modf(p.y / laty + 0.5, &ipart);
if (ry < 0) ry += 1;
rz = modf(p.z / latz + 0.5, &ipart);
if (rz < 0) rz += 1;
/* get the point corresponding to r in the grid: */
x = rx * nx;
y = ry * ny;
z = rz * nz;
/* get the difference between (x,y,z) and the actual point */
dx = rx * nx - x;
dy = ry * ny - y;
dz = rz * nz - z;
/* get the other closest point in the grid, with periodic boundaries: */
x2 = (nx + (dx >= 0.0 ? x + 1 : x - 1)) % nx;
y2 = (ny + (dy >= 0.0 ? y + 1 : y - 1)) % ny;
z2 = (nz + (dz >= 0.0 ? z + 1 : z - 1)) % nz;
/* take abs(d{xyz}) to get weights for {xyz} and {xyz}2: */
dx = fabs(dx);
dy = fabs(dy);
dz = fabs(dz);
#define D(x, y, z) (get_val(x, y, z, nx, ny, nz, last_dim_size, data, stride, conjugate))
return (((D(x, y, z) * (1.0 - dx) + D(x2, y, z) * dx) * (1.0 - dy) +
(D(x, y2, z) * (1.0 - dx) + D(x2, y2, z) * dx) * dy) *
(1.0 - dz) +
((D(x, y, z2) * (1.0 - dx) + D(x2, y, z2) * dx) * (1.0 - dy) +
(D(x, y2, z2) * (1.0 - dx) + D(x2, y2, z2) * dx) * dy) *
dz);
#undef D
}
scalar_complex mode_solver::interp_cval(vector3 p, int nx, int ny, int nz, int last_dim_size,
mpb_real *data, int stride) {
scalar_complex cval;
cval.re = interp_val(p, nx, ny, nz, last_dim_size, data, stride, 0);
cval.im = interp_val(p, nx, ny, nz, last_dim_size, data + 1, stride, 1);
return cval;
}
#define f_interp_val(p, f, data, stride, conj) \
interp_val(p, f->nx, f->ny, f->nz, f->last_dim_size, data, stride, conj)
#define f_interp_cval(p, f, data, stride) \
interp_cval(p, f->nx, f->ny, f->nz, f->last_dim_size, data, stride)
symmetric_matrix mode_solver::interp_eps_inv(vector3 p) {
int stride = sizeof(symmetric_matrix) / sizeof(mpb_real);
symmetric_matrix eps_inv;
eps_inv.m00 = f_interp_val(p, mdata, &mdata->eps_inv->m00, stride, 0);
eps_inv.m11 = f_interp_val(p, mdata, &mdata->eps_inv->m11, stride, 0);
eps_inv.m22 = f_interp_val(p, mdata, &mdata->eps_inv->m22, stride, 0);
#ifdef WITH_HERMITIAN_EPSILON
eps_inv.m01 = f_interp_cval(p, mdata, &mdata->eps_inv->m01.re, stride);
eps_inv.m02 = f_interp_cval(p, mdata, &mdata->eps_inv->m02.re, stride);
eps_inv.m12 = f_interp_cval(p, mdata, &mdata->eps_inv->m12.re, stride);
#else
eps_inv.m01 = f_interp_val(p, mdata, &mdata->eps_inv->m01, stride, 0);
eps_inv.m02 = f_interp_val(p, mdata, &mdata->eps_inv->m02, stride, 0);
eps_inv.m12 = f_interp_val(p, mdata, &mdata->eps_inv->m12, stride, 0);
#endif
return eps_inv;
}
mpb_real mode_solver::get_epsilon_point(vector3 p) {
symmetric_matrix eps_inv;
eps_inv = interp_eps_inv(p);
return mean_medium_from_matrix(&eps_inv);
}
cmatrix3x3 mode_solver::get_epsilon_inverse_tensor_point(vector3 p) {
symmetric_matrix eps_inv;
eps_inv = interp_eps_inv(p);
#ifdef WITH_HERMITIAN_EPSILON
return make_hermitian_cmatrix3x3(eps_inv.m00, eps_inv.m11, eps_inv.m22,
cscalar2cnumber(eps_inv.m01), cscalar2cnumber(eps_inv.m02),
cscalar2cnumber(eps_inv.m12));
#else
return make_hermitian_cmatrix3x3(eps_inv.m00, eps_inv.m11, eps_inv.m22,
make_cnumber(eps_inv.m01, 0), make_cnumber(eps_inv.m02, 0),
make_cnumber(eps_inv.m12, 0));
#endif
}
mpb_real mode_solver::get_energy_point(vector3 p) {
CHECK(curfield && strchr("DHBR", curfield_type),
"compute-field-energy must be called before get-energy-point");
return f_interp_val(p, mdata, (mpb_real *)curfield, 1, 0);
}
void mode_solver::get_bloch_field_point_(scalar_complex field[3], vector3 p) {
CHECK(curfield && strchr("dhbecv", curfield_type),
"field must be must be loaded before get-*field*-point");
field[0] = f_interp_cval(p, mdata, &curfield[0].re, 6);
field[1] = f_interp_cval(p, mdata, &curfield[1].re, 6);
field[2] = f_interp_cval(p, mdata, &curfield[2].re, 6);
}
cvector3 mode_solver::get_bloch_field_point(vector3 p) {
scalar_complex field[3];
cvector3 F;
get_bloch_field_point_(field, p);
F = cscalar32cvector3(field);
return F;
}
cvector3 mode_solver::get_field_point(vector3 p) {
scalar_complex field[3], phase;
cvector3 F;
CHECK(curfield && strchr("dhbecv", curfield_type),
"field must be must be loaded before get-*field*-point");
field[0] = f_interp_cval(p, mdata, &curfield[0].re, 6);
field[1] = f_interp_cval(p, mdata, &curfield[1].re, 6);
field[2] = f_interp_cval(p, mdata, &curfield[2].re, 6);
if (curfield_type != 'v') {
mpb_real latx = geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x;
mpb_real laty = geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y;
mpb_real latz = geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z;
double phase_phi = TWOPI * (cur_kvector.x * (p.x / latx) + cur_kvector.y * (p.y / laty) +
cur_kvector.z * (p.z / latz));
CASSIGN_SCALAR(phase, cos(phase_phi), sin(phase_phi));
CASSIGN_MULT(field[0], field[0], phase);
CASSIGN_MULT(field[1], field[1], phase);
CASSIGN_MULT(field[2], field[2], phase);
}
F = cscalar32cvector3(field);
return F;
}
void mode_solver::multiply_bloch_phase(std::complex<double> *cdata) {
std::vector<mpb_real> kvector = get_output_k();
scalar_complex *data = cdata ? (scalar_complex *)cdata : (scalar_complex *)curfield;
int dims[] = {mdata->nx, mdata->ny, mdata->nz};
int local_dims[] = {mdata->local_nx, mdata->ny, mdata->nz};
int start[] = {mdata->local_x_start, 0, 0};
mpb_real s[3]; /* the step size between grid points dotted with k */
std::vector<scalar_complex> phasex(local_dims[0]);
std::vector<scalar_complex> phasey(local_dims[1]);
std::vector<scalar_complex> phasez(local_dims[2]);
for (int i = 0; i < 3; ++i) {
s[i] = TWOPI * kvector[i] / dims[i];
}
/* cache exp(ikx) along each of the directions, for speed */
for (int i = 0; i < local_dims[0]; ++i) {
mpb_real phase = s[0] * (i + start[0]);
phasex[i].re = cos(phase);
phasex[i].im = sin(phase);
}
for (int j = 0; j < local_dims[1]; ++j) {
mpb_real phase = s[1] * (j + start[1]);
phasey[j].re = cos(phase);
phasey[j].im = sin(phase);
}
for (int k = 0; k < local_dims[2]; ++k) {
mpb_real phase = s[2] * (k + start[2]);
phasez[k].re = cos(phase);
phasez[k].im = sin(phase);
}
/* Now, multiply field by exp(i k*r): */
for (int i = 0; i < local_dims[0]; ++i) {
scalar_complex px = phasex[i];
for (int j = 0; j < local_dims[1]; ++j) {
scalar_complex py;
mpb_real re = phasey[j].re;
mpb_real im = phasey[j].im;
py.re = px.re * re - px.im * im;
py.im = px.re * im + px.im * re;
for (int k = 0; k < local_dims[2]; ++k) {
int ijk = ((i * local_dims[1] + j) * local_dims[2] + k) * 3;
mpb_real p_re, p_im;
mpb_real re = phasez[k].re, im = phasez[k].im;
p_re = py.re * re - py.im * im;
p_im = py.re * im + py.im * re;
for (int component = 0; component < 3; ++component) {
int ijkc = ijk + component;
re = data[ijkc].re;
im = data[ijkc].im;
data[ijkc].re = re * p_re - im * p_im;
data[ijkc].im = im * p_re + re * p_im;
}
}
}
}
}
// Replace the current field with its scalar divergence; only works for Bloch fields
void mode_solver::compute_field_divergence() {
scalar *field = (scalar *)curfield;
scalar *field2 = mdata->fft_data == mdata->fft_data2
? field
: (field == mdata->fft_data ? mdata->fft_data2 : mdata->fft_data);
mpb_real scale;
if (!curfield || !strchr("dhbec", curfield_type)) {
meep::master_fprintf(stderr, "A Bloch-periodic field must be loaded.\n");
return;
}
/* convert back to Fourier space */
maxwell_compute_fft(-1, mdata, field, field2, 3, 3, 1);
/* compute (k+G) dot field */
for (int i = 0; i < mdata->other_dims; ++i) {
for (int j = 0; j < mdata->last_dim; ++j) {
int ij = i * mdata->last_dim_size + j;
k_data cur_k = mdata->k_plus_G[ij];
/* k+G = |k+G| (m x n) */
mpb_real kx = cur_k.kmag * (cur_k.my * cur_k.nz - cur_k.mz * cur_k.ny);
mpb_real ky = cur_k.kmag * (cur_k.mz * cur_k.nx - cur_k.mx * cur_k.nz);
mpb_real kz = cur_k.kmag * (cur_k.mx * cur_k.ny - cur_k.my * cur_k.nz);
ASSIGN_SCALAR(field2[ij],
SCALAR_RE(field2[3 * ij + 0]) * kx + SCALAR_RE(field2[3 * ij + 1]) * ky +
SCALAR_RE(field2[3 * ij + 2]) * kz,
SCALAR_IM(field2[3 * ij + 0]) * kx + SCALAR_IM(field2[3 * ij + 1]) * ky +
SCALAR_IM(field2[3 * ij + 2]) * kz);
}
}
/* convert scalar field back to position space */
maxwell_compute_fft(+1, mdata, field2, field, 1, 1, 1);
// multiply by i (from divergence) and normalization (from FFT) and 2*pi (from k+G)
scale = TWOPI / H.N;
int N = mdata->fft_output_size;
for (int i = 0; i < N; ++i) {
CASSIGN_SCALAR(curfield[i], -CSCALAR_IM(curfield[i]) * scale, CSCALAR_RE(curfield[i]) * scale);
}
curfield_type = 'C'; // complex (Bloch) scalar field
}
/* Fix the phase of the current field (e/h/b/d) to a canonical value.
Also changes the phase of the corresponding eigenvector by the
same amount, so that future calculations will have a consistent
phase.
The following procedure is used, derived from a suggestion by Doug
Allan of Corning: First, choose the phase to maximize the sum of
the squares of the real parts of the components. This doesn't fix
the overall sign, though. That is done (after incorporating the
above phase) by: (1) find the largest absolute value of the real
part, (2) find the point with the greatest spatial array index that
has |real part| at least half of the largest value, and (3) make
that point positive.
In the case of inversion symmetry, on the other hand, the overall phase
is already fixed, to within a sign, by the choice to make the Fourier
transform purely real. So, in that case we simply pick a sign, in
a manner similar to (2) and (3) above. */
void mode_solver::fix_field_phase() {
mpb_real sq_sum2[2] = {0, 0};
mpb_real sq_sum[2];
mpb_real maxabs = 0.0;
int maxabs_index = 0;
int maxabs_sign = 1;
int i;
double theta;
scalar phase;
if (!curfield || !strchr("dhbecv", curfield_type)) {
meep::master_fprintf(stderr, "The D/H/E field must be loaded first.\n");
return;
}
int N = mdata->fft_output_size * 3;
/* Compute the phase that maximizes the sum of the squares of
the real parts of the components. Equivalently, maximize
the real part of the sum of the squares. */
for (i = 0; i < N; ++i) {
mpb_real a = curfield[i].re;
mpb_real b = curfield[i].im;
sq_sum2[0] += a * a - b * b;
sq_sum2[1] += 2 * a * b;
}
mpi_allreduce(sq_sum2, sq_sum, 2, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
/* compute the phase = exp(i*theta) maximizing the real part of
the sum of the squares. i.e., maximize:
cos(2*theta)*sq_sum[0] - sin(2*theta)*sq_sum[1] */
theta = 0.5 * atan2(-sq_sum[1], sq_sum[0]);
phase.re = cos(theta);
phase.im = sin(theta);
/* Next, fix the overall sign. We do this by first computing the
maximum |real part| of the jmax component (after multiplying
by phase), and then finding the last spatial index at which
|real part| is at least half of this value. The sign is then
chosen to make the real part positive at that point.
(Note that we can't just make the point of maximum |real part|
positive, as that would be ambiguous in the common case of an
oscillating field within the unit cell.)
In the case of inversion symmetry (!SCALAR_COMPLEX), we work with
(real part - imag part) instead of (real part), to insure that we
have something that is nonzero somewhere. */
for (i = 0; i < N; ++i) {
mpb_real r = fabs(curfield[i].re * phase.re - curfield[i].im * phase.im);
if (r > maxabs) { maxabs = r; }
}
mpi_allreduce_1(&maxabs, mpb_real, SCALAR_MPI_TYPE, MPI_MAX, mpb_comm);
for (i = N - 1; i >= 0; --i) {
mpb_real r = curfield[i].re * phase.re - curfield[i].im * phase.im;
if (fabs(r) >= 0.5 * maxabs) {
maxabs_index = i;
maxabs_sign = r < 0 ? -1 : 1;
break;
}
}
if (i >= 0) { /* convert index to global index in distributed array: */
maxabs_index += mdata->local_y_start * mdata->nx * mdata->nz;
}
{
/* compute maximum index and corresponding sign over all the
processors, using the MPI_MAXLOC reduction operation: */
struct twoint_struct {
int i;
int s;
} x;
x.i = maxabs_index;
x.s = maxabs_sign;
mpi_allreduce_1(&x, struct twoint_struct, MPI_2INT, MPI_MAXLOC, mpb_comm);
maxabs_index = x.i;
maxabs_sign = x.s;
}
ASSIGN_SCALAR(phase, SCALAR_RE(phase) * maxabs_sign, SCALAR_IM(phase) * maxabs_sign);
if (mpb_verbosity > 0)
meep::master_printf("Fixing %c-field (band %d) phase by %g + %gi; "
"max ampl. = %g\n",
curfield_type, curfield_band, SCALAR_RE(phase), SCALAR_IM(phase), maxabs);
/* Now, multiply everything by this phase, *including* the
stored "raw" eigenvector in H, so that any future fields
that we compute will have a consistent phase: */
for (i = 0; i < N; ++i) {
mpb_real a = curfield[i].re;
mpb_real b = curfield[i].im;
curfield[i].re = a * SCALAR_RE(phase) - b * SCALAR_IM(phase);
curfield[i].im = a * SCALAR_IM(phase) + b * SCALAR_RE(phase);
}
for (int i = 0; i < H.n; ++i) {
mpb_real bbbb_re = H.data[i * H.p + curfield_band - 1].re;
mpb_real bbbb_im = H.data[i * H.p + curfield_band - 1].im;
mpb_real cccc_re = phase.re;
mpb_real cccc_im = phase.im;
H.data[i * H.p + curfield_band - 1].re = bbbb_re * cccc_re - bbbb_im * cccc_im;
H.data[i * H.p + curfield_band - 1].im = bbbb_re * cccc_im + bbbb_im * cccc_re;
}
}
void mode_solver::get_lattice(double data[3][3]) { matrix3x3_to_arr(data, Rm); }
std::vector<int> mode_solver::get_eigenvectors_slice_dims(int num_bands) {
std::vector<int> res(3);
res[0] = H.localN;
res[1] = H.c;
res[2] = num_bands;
return res;
}
void mode_solver::get_eigenvectors(int p_start, int p, std::complex<mpb_real> *cdata, int size) {
for (int i = 0, j = p_start; i < size; i += p, j += H.p) {
for (int k = 0; k < p; ++k) {
cdata[i + k] = std::complex<mpb_real>(H.data[j + k].re, H.data[j + k].im);
}
}
}
void mode_solver::set_eigenvectors(int b_start, std::complex<mpb_real> *cdata, int size) {
int columns = size / H.n;
for (int i = 0, j = b_start; i < size; i += columns, j += H.p) {
for (int k = 0; k < columns; ++k) {
H.data[j + k].re = cdata[i + k].real();
H.data[j + k].im = cdata[i + k].imag();
}
}
curfield_reset();
}
double mode_solver::get_eigensolver_flops() { return eigensolver_flops; }
int mode_solver::get_iterations() { return iterations; }
std::vector<mpb_real> mode_solver::compute_zparities() {
std::vector<mpb_real> z_parity(num_bands);
double *d = maxwell_zparity(H, mdata);
for (int i = 0; i < num_bands; ++i) {
z_parity[i] = d[i];
}
free(d);
return z_parity;
}
std::vector<mpb_real> mode_solver::compute_yparities() {
std::vector<mpb_real> y_parity(num_bands);
double *d = maxwell_yparity(H, mdata);
for (int i = 0; i < num_bands; ++i) {
y_parity[i] = d[i];
}
free(d);
return y_parity;
}
/* Compute the group velocity dw/dk in the given direction d (where
the length of d is ignored). d is in the reciprocal lattice basis.
Should only be called after solve_kpoint. Returns a list of the
group velocities, one for each band, in units of c. */
std::vector<mpb_real> mode_solver::compute_group_velocity_component(vector3 d) {
curfield_reset(); // has the side effect of overwriting curfield scratch
if (!mdata) {
meep::master_fprintf(stderr, "mode_solver.init must be called first!\n");
return std::vector<mpb_real>(0);
}
if (!kpoint_index) {
meep::master_fprintf(stderr, "mode_solver.solve_kpoint must be called first!\n");
return std::vector<mpb_real>(0);
}
/* convert d to unit vector in Cartesian coords: */
d = unit_vector3(matrix3x3_vector3_mult(Gm, d));
mpb_real u[] = {d.x, d.y, d.z};
std::vector<mpb_real> group_v(num_bands);
std::vector<mpb_real> gv_scratch(num_bands * 2);
/* now, compute group_v.items = diag Re <H| curl 1/eps i u x |H>: */
/* ...we have to do this in blocks of eigensolver_block_size since
the work matrix W[0] may not have enough space to do it all at once. */
for (int ib = 0; ib < num_bands; ib += Hblock.alloc_p) {
if (ib + mdata->num_bands > num_bands) {
maxwell_set_num_bands(mdata, num_bands - ib);
evectmatrix_resize(&W[0], num_bands - ib, 0);
evectmatrix_resize(&Hblock, num_bands - ib, 0);
}
maxwell_compute_H_from_B(mdata, H, Hblock, (scalar_complex *)mdata->fft_data, ib, 0, Hblock.p);
maxwell_ucross_op(Hblock, W[0], mdata, u);
evectmatrix_XtY_diag_real(Hblock, W[0], gv_scratch.data(), gv_scratch.data() + group_v.size());
{
for (int ip = 0; ip < Hblock.p; ++ip)
group_v[ib + ip] = gv_scratch[ip];
}
}
/* Reset scratch matrix sizes: */
evectmatrix_resize(&Hblock, Hblock.alloc_p, 0);
evectmatrix_resize(&W[0], W[0].alloc_p, 0);
maxwell_set_num_bands(mdata, Hblock.alloc_p);
/* The group velocity is given by:
grad_k(omega)*d = grad_k(omega^2)*d / 2*omega
= grad_k(<H|maxwell_op|H>)*d / 2*omega
= Re <H| curl 1/eps i u x |H> / omega
Note that our k is in units of 2*Pi/a, and omega is in
units of 2*Pi*c/a, so the result will be in units of c. */
for (int i = 0; i < num_bands; ++i) {
if (freqs[i] == 0) { /* v is undefined in this case */
group_v[i] = 0.0; /* just set to zero */
}
else { group_v[i] /= negative_epsilon_ok ? sqrt(fabs(freqs[i])) : freqs[i]; }
}
return group_v;
}
/* as above, but only computes for given band */
mpb_real mode_solver::compute_1_group_velocity_component(vector3 d, int b) {
mpb_real u[3];
int ib = b - 1;
mpb_real group_v = 0;
mpb_real scratch;
curfield_reset();
if (!mdata) {
meep::master_fprintf(stderr, "mode_solver.init must be called first!\n");
return group_v;
}
if (!kpoint_index) {
meep::master_fprintf(stderr, "mode_solver.solve_kpoint must be called first!\n");
return group_v;
}
/* convert d to unit vector in Cartesian coords: */
d = unit_vector3(matrix3x3_vector3_mult(Gm, d));
u[0] = d.x;
u[1] = d.y;
u[2] = d.z;
evectmatrix_resize(&W[0], 1, 0);
CHECK(nwork_alloc > 1, "eigensolver-nwork is too small");
evectmatrix_resize(&W[1], 1, 0);
maxwell_compute_H_from_B(mdata, H, W[1], (scalar_complex *)mdata->fft_data, ib, 0, 1);
maxwell_ucross_op(W[1], W[0], mdata, u);
evectmatrix_XtY_diag_real(W[1], W[0], &group_v, &scratch);
/* Reset scratch matrix sizes: */
evectmatrix_resize(&W[1], W[1].alloc_p, 0);
evectmatrix_resize(&W[0], W[0].alloc_p, 0);
if (freqs[ib] == 0) { /* v is undefined in this case */
group_v = 0.0; /* just set to zero */
}
else { group_v /= negative_epsilon_ok ? sqrt(fabs(freqs[ib])) : freqs[ib]; }
return group_v;
}
/* returns group velocity for band b, in Cartesian coordinates */
vector3 mode_solver::compute_1_group_velocity(int b) {
vector3 v;
vector3 d;
matrix3x3 RmT = matrix3x3_transpose(Rm);
d.x = 1;
d.y = 0;
d.z = 0;
v.x = compute_1_group_velocity_component(matrix3x3_vector3_mult(RmT, d), b);
d.y = 1;
d.x = 0;
d.z = 0;
v.y = compute_1_group_velocity_component(matrix3x3_vector3_mult(RmT, d), b);
d.z = 1;
d.y = 0;
d.x = 0;
v.z = compute_1_group_velocity_component(matrix3x3_vector3_mult(RmT, d), b);
return v;
}
/* as above, but returns "group velocity" given by gradient of
frequency with respect to k in reciprocal coords ... this is useful
for band optimization. */
vector3 mode_solver::compute_1_group_velocity_reciprocal(int b) {
return matrix3x3_vector3_mult(matrix3x3_transpose(Gm), compute_1_group_velocity(b));
}
/* compute the fraction of the field energy that is located in the
given range of dielectric constants: */
mpb_real mode_solver::compute_energy_in_dielectric(mpb_real eps_low, mpb_real eps_high) {
mpb_real *energy = (mpb_real *)curfield;
mpb_real epsilon = 0.0;
mpb_real energy_sum = 0.0;
if (!curfield || !strchr("DHBR", curfield_type)) {
meep::master_fprintf(stderr, "The D or H energy density must be loaded first.\n");
return 0.0;
}
int N = mdata->fft_output_size;
for (int i = 0; i < N; ++i) {
epsilon = mean_medium_from_matrix(mdata->eps_inv + i);
if (epsilon >= eps_low && epsilon <= eps_high) { energy_sum += energy[i]; }
}
mpi_allreduce_1(&energy_sum, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
energy_sum *= vol / H.N;
return energy_sum;
}
/* For curfield and energy density, compute the fraction of the energy
that resides inside the given list of geometric objects. Later
objects in the list have precedence, just like the ordinary
geometry list. */
double mode_solver::compute_energy_in_objects(geometric_object_list objects) {
mpb_real *energy = (mpb_real *)curfield;
mpb_real energy_sum = 0;
if (!curfield || !strchr("DHBR", curfield_type)) {
meep::master_fprintf(stderr, "The D or H energy density must be loaded first.\n");
return 0.0;
}
geom_fix_object_list(objects);
int n1 = mdata->nx;
int n2 = mdata->ny;
int n3 = mdata->nz;
mpb_real s1 = geometry_lattice.size.x / n1;
mpb_real s2 = geometry_lattice.size.y / n2;
mpb_real s3 = geometry_lattice.size.z / n3;
mpb_real c1 = n1 <= 1 ? 0 : geometry_lattice.size.x * 0.5;
mpb_real c2 = n2 <= 1 ? 0 : geometry_lattice.size.y * 0.5;
mpb_real c3 = n3 <= 1 ? 0 : geometry_lattice.size.z * 0.5;
LOOP_XYZ(mdata) {
vector3 p;
int n;
p.x = i1 * s1 - c1;
p.y = i2 * s2 - c2;
p.z = i3 * s3 - c3;
for (n = objects.num_items - 1; n >= 0; --n) {
if (point_in_periodic_fixed_objectp(p, objects.items[n])) {
// TODO:
// if (((meep_geom::material_data *)objects.items[n].material)->which_subclass ==
// MATERIAL_TYPE_SELF) {
// break; /* treat as a "nothing" object */
// }
energy_sum += energy[xyz_index];
break;
}
}
}
}
} // namespace py_mpb
mpi_allreduce_1(&energy_sum, mpb_real, SCALAR_MPI_TYPE, MPI_SUM, mpb_comm);
energy_sum *= vol / H.N;
return energy_sum;
}
cnumber mode_solver::compute_field_integral(field_integral_func field_func,
field_integral_energy_func energy_func, void *py_func) {
mpb_real *energy = (mpb_real *)curfield;
cnumber integral = {0, 0};
vector3 kvector = {0, 0, 0};
if (!curfield || !strchr("dhbeDHBRcv", curfield_type)) {
meep::master_fprintf(stderr, "The D or H energy/field must be loaded first.\n");
return integral;
}
if (curfield_type != 'v') { kvector = cur_kvector; }
int integrate_energy = strchr("DHBR", curfield_type) != NULL;
int n1 = mdata->nx;
int n2 = mdata->ny;
int n3 = mdata->nz;
mpb_real latx = geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x;
mpb_real laty = geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y;
mpb_real latz = geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z;
mpb_real s1 = latx / n1;
mpb_real s2 = laty / n2;
mpb_real s3 = latz / n3;
mpb_real c1 = n1 <= 1 ? 0 : latx * 0.5;
mpb_real c2 = n2 <= 1 ? 0 : laty * 0.5;
mpb_real c3 = n3 <= 1 ? 0 : latz * 0.5;
LOOP_XYZ(mdata) {
mpb_real epsilon = mean_medium_from_matrix(mdata->eps_inv + xyz_index);
vector3 p;
p.x = i1 * s1 - c1;
p.y = i2 * s2 - c2;
p.z = i3 * s3 - c3;
if (integrate_energy) { integral.re += energy_func(energy[xyz_index], epsilon, p, py_func); }
else {
double phase_phi =
TWOPI * (kvector.x * (p.x / latx) + kvector.y * (p.y / laty) + kvector.z * (p.z / latz));
scalar_complex phase;
CASSIGN_SCALAR(phase, cos(phase_phi), sin(phase_phi));
cvector3 F;
CASSIGN_MULT_RE(F.x.re, curfield[3 * xyz_index + 0], phase);
CASSIGN_MULT_IM(F.x.im, curfield[3 * xyz_index + 0], phase);
CASSIGN_MULT_RE(F.y.re, curfield[3 * xyz_index + 1], phase);
CASSIGN_MULT_IM(F.y.im, curfield[3 * xyz_index + 1], phase);
CASSIGN_MULT_RE(F.z.re, curfield[3 * xyz_index + 2], phase);
CASSIGN_MULT_IM(F.z.im, curfield[3 * xyz_index + 2], phase);
cnumber integrand = field_func(F, epsilon, p, py_func);
integral.re += integrand.re;
integral.im += integrand.im;
}
}
}
}
integral.re *= vol / H.N;
integral.im *= vol / H.N;
{
cnumber integral_sum;
mpi_allreduce(&integral, &integral_sum, 2, number, MPI_DOUBLE, MPI_SUM, mpb_comm);
return integral_sum;
}
}
number mode_solver::compute_energy_integral(field_integral_func field_func,
field_integral_energy_func energy_func, void *py_func) {
if (!curfield || !strchr("DHBR", curfield_type)) {
meep::master_fprintf(stderr, "The D or H energy density must be loaded first.\n");
return 0.0;
}
return cnumber_re(compute_field_integral(field_func, energy_func, py_func));
}
vector3 mode_solver::get_dominant_planewave(int band) {
double kdom[3] = {0, 0, 0};
#if MPB_VERSION_MAJOR > 1 || (MPB_VERSION_MAJOR == 1 && MPB_VERSION_MINOR >= 7)
maxwell_dominant_planewave(mdata, H, band, kdom);
#endif
vector3 result = {kdom[0], kdom[1], kdom[2]};
return result;
}
// Used in MPBData python class
/* A macro to set x = fractional part of x input, xi = integer part,
with 0 <= x < 1.0. Note that we need the second test (if x >= 1.0)
below, because x may start out as -0 or -1e-23 or something so that
it is < 0 but x + 1.0 == 1.0, thanks to the wonders of floating point.
(This has actually happened, on an Alpha.) */
#define MODF_POSITIVE(x, xi) \
{ \
x = modf(x, &xi); \
if (x < 0) { \
x += 1.0; \
if (x >= 1.0) \
x = 0; \
else \
xi -= 1.0; \
} \
}
#define ADJ_POINT(i1, i2, nx, dx, xi, xi2) \
{ \
if (dx >= 0.0) { \
i2 = i1 + 1; \
if (i2 >= nx) { \
i2 -= nx; \
xi2 = xi + 1.0; \
} \
else \
xi2 = xi; \
} \
else { \
i2 = i1 - 1; \
if (i2 < 0) { \
i2 += nx; \
xi2 = xi - 1.0; \
} \
else \
xi2 = xi; \
dx = -dx; \
} \
}
#define MAX2(a, b) ((a) >= (b) ? (a) : (b))
#define MIN2(a, b) ((a) < (b) ? (a) : (b))
void add_cmplx_times_phase(mpb_real *sum_re, mpb_real *sum_im, mpb_real d_re, mpb_real d_im,
double ix, double iy, double iz, mpb_real *s, mpb_real scale_by) {
static mpb_real phase = 0.0, p_re = 1.0, p_im = 0.0;
mpb_real new_phase;
new_phase = ix * s[0] + iy * s[1] + iz * s[2];
if (new_phase != phase) {
phase = new_phase;
p_re = cos(phase);
p_im = sin(phase);
}
*sum_re += (d_re * p_re - d_im * p_im) * scale_by;
*sum_im += (d_re * p_im + d_im * p_re) * scale_by;
}
void map_data(mpb_real *d_in_re, int size_in_re, mpb_real *d_in_im, int size_in_im, int n_in[3],
mpb_real *d_out_re, int size_out_re, mpb_real *d_out_im, int size_out_im,
int n_out[3], matrix3x3 coord_map, mpb_real *kvector, bool pick_nearest, bool verbose,
bool multiply_bloch_phase) {
(void)size_in_re;
(void)size_in_im;
(void)size_out_re;
mpb_real s[3]; /* phase difference per cell in each lattice direction */
mpb_real min_out_re = 1e20, max_out_re = -1e20, min_out_im = 1e20, max_out_im = -1e20;
mpb_real shiftx, shifty, shiftz;
CHECK(d_in_re && d_out_re, "invalid arguments");
CHECK((d_out_im && d_in_im) || (!d_out_im && !d_in_im),
"both input and output must be real or complex");
coord_map.c0 = vector3_scale(1.0 / n_out[0], coord_map.c0);
coord_map.c1 = vector3_scale(1.0 / n_out[1], coord_map.c1);
coord_map.c2 = vector3_scale(1.0 / n_out[2], coord_map.c2);
for (int i = 0; i < 3; ++i) {
if (kvector)
s[i] = kvector[i] * TWOPI;
else
s[i] = 0;
}
/* Compute shift so that the origin of the output cell
is mapped to the origin of the original primitive cell: */
shiftx = 0.5 - (coord_map.c0.x * 0.5 * n_out[0] + coord_map.c1.x * 0.5 * n_out[1] +
coord_map.c2.x * 0.5 * n_out[2]);
shifty = 0.5 - (coord_map.c0.y * 0.5 * n_out[0] + coord_map.c1.y * 0.5 * n_out[1] +
coord_map.c2.y * 0.5 * n_out[2]);
shiftz = 0.5 - (coord_map.c0.z * 0.5 * n_out[0] + coord_map.c1.z * 0.5 * n_out[1] +
coord_map.c2.z * 0.5 * n_out[2]);
for (int i = 0; i < n_out[0]; ++i)
for (int j = 0; j < n_out[1]; ++j)
for (int k = 0; k < n_out[2]; ++k) {
mpb_real x, y, z;
double xi, yi, zi, xi2, yi2, zi2;
double dx, dy, dz, mdx, mdy, mdz;
int i1, j1, k1, i2, j2, k2;
int ijk;
ijk = (i * n_out[1] + j) * n_out[2] + k;
/* find the point corresponding to d_out[i,j,k] in
the input array, and also find the next-nearest
points. */
x = coord_map.c0.x * i + coord_map.c1.x * j + coord_map.c2.x * k + shiftx;
y = coord_map.c0.y * i + coord_map.c1.y * j + coord_map.c2.y * k + shifty;
z = coord_map.c0.z * i + coord_map.c1.z * j + coord_map.c2.z * k + shiftz;
MODF_POSITIVE(x, xi);
MODF_POSITIVE(y, yi);
MODF_POSITIVE(z, zi);
if (multiply_bloch_phase) {
xi += x;
yi += y;
zi += z;
}
i1 = x * n_in[0];
j1 = y * n_in[1];
k1 = z * n_in[2];
dx = x * n_in[0] - i1;
dy = y * n_in[1] - j1;
dz = z * n_in[2] - k1;
ADJ_POINT(i1, i2, n_in[0], dx, xi, xi2);
ADJ_POINT(j1, j2, n_in[1], dy, yi, yi2);
ADJ_POINT(k1, k2, n_in[2], dz, zi, zi2);
/* dx, mdx, etcetera, are the weights for the various
points in the input data, which we use for linearly
interpolating to get the output point. */
if (pick_nearest) {
/* don't interpolate */
dx = dx <= 0.5 ? 0.0 : 1.0;
dy = dy <= 0.5 ? 0.0 : 1.0;
dz = dz <= 0.5 ? 0.0 : 1.0;
}
mdx = 1.0 - dx;
mdy = 1.0 - dy;
mdz = 1.0 - dz;
/* Now, linearly interpolate the input to get the
output. If the input/output are complex, we
also need to multiply by the appropriate phase
factor, depending upon which unit cell we are in. */
#define IN_INDEX(i, j, k) ((i * n_in[1] + j) * n_in[2] + k)
if (size_out_im > 0) {
d_out_re[ijk] = 0.0;
d_out_im[ijk] = 0.0;
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i1, j1, k1)],
d_in_im[IN_INDEX(i1, j1, k1)], xi, yi, zi, s, mdx * mdy * mdz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i1, j1, k2)],
d_in_im[IN_INDEX(i1, j1, k2)], xi, yi, zi2, s, mdx * mdy * dz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i1, j2, k1)],
d_in_im[IN_INDEX(i1, j2, k1)], xi, yi2, zi, s, mdx * dy * mdz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i1, j2, k2)],
d_in_im[IN_INDEX(i1, j2, k2)], xi, yi2, zi2, s, mdx * dy * dz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i2, j1, k1)],
d_in_im[IN_INDEX(i2, j1, k1)], xi2, yi, zi, s, dx * mdy * mdz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i2, j1, k2)],
d_in_im[IN_INDEX(i2, j1, k2)], xi2, yi, zi2, s, dx * mdy * dz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i2, j2, k1)],
d_in_im[IN_INDEX(i2, j2, k1)], xi2, yi2, zi, s, dx * dy * mdz);
add_cmplx_times_phase(d_out_re + ijk, d_out_im + ijk, d_in_re[IN_INDEX(i2, j2, k2)],
d_in_im[IN_INDEX(i2, j2, k2)], xi2, yi2, zi2, s, dx * dy * dz);
min_out_im = MIN2(min_out_im, d_out_im[ijk]);
max_out_im = MAX2(max_out_im, d_out_im[ijk]);
}
else {
d_out_re[ijk] = d_in_re[IN_INDEX(i1, j1, k1)] * mdx * mdy * mdz +
d_in_re[IN_INDEX(i1, j1, k2)] * mdx * mdy * dz +
d_in_re[IN_INDEX(i1, j2, k1)] * mdx * dy * mdz +
d_in_re[IN_INDEX(i1, j2, k2)] * mdx * dy * dz +
d_in_re[IN_INDEX(i2, j1, k1)] * dx * mdy * mdz +
d_in_re[IN_INDEX(i2, j1, k2)] * dx * mdy * dz +
d_in_re[IN_INDEX(i2, j2, k1)] * dx * dy * mdz +
d_in_re[IN_INDEX(i2, j2, k2)] * dx * dy * dz;
}
min_out_re = MIN2(min_out_re, d_out_re[ijk]);
max_out_re = MAX2(max_out_re, d_out_re[ijk]);
#undef IN_INDEX
}
if (verbose || mpb_verbosity > 0) {
meep::master_printf("real part range: %g .. %g\n", min_out_re, max_out_re);
if (size_out_im > 0) meep::master_printf("imag part range: %g .. %g\n", min_out_im, max_out_im);
}
}
bool with_hermitian_epsilon() {
#ifdef WITH_HERMITIAN_EPSILON
return true;
#else
return false;
#endif
}
/* --- port of mpb's mpb/transform.c --- */
/* If `curfield` is the real-space D-field (of band-index i), computes the overlap
* ∫ Eᵢ†(r){W|w}Dᵢ(r) dr = ∫ Eᵢ†(r)(WDᵢ)({W|w}⁻¹r) dr,
* for a symmetry operation {W|w} with rotation W and translation w; each specified
* in the lattice basis. The vector fields Eᵢ and Dᵢ include Bloch phases.
* If `curfield` is the real-space B-field, the overlap
* ∫ Hᵢ†(r){W|w}Bᵢ(r) dr = det(W) ∫ Hᵢ†(r)(WBᵢ)({W|w}⁻¹r) dr,
* is computed instead. Note that a factor det(W) is then included since B & H are
* pseudovectors. As a result, the computed symmetry expectation values are
* independent of whether the D- or B-field is used.
* No other choices for `curfield` are allowed: to set `curfield` to the real-space
* B- or D-field use the `get_bfield` and `get_dfield` Python functions (_without_
* the Bloch included) or the `get_bfield` and `get_dfield` C functions.
* Usually, it will be more convenient to use the wrapper `compute_symmetry(i, W, w)`
* which defaults to the B-field (since μ = 1 usually) and takes a band-index `i`. */
cnumber mode_solver::transformed_overlap(matrix3x3 W, vector3 w) {
int n1, n2, n3;
mpb_real s1, s2, s3, c1, c2, c3;
cnumber integral = {0, 0}, integral_sum;
number detW;
vector3 kvector = cur_kvector;
matrix3x3 invW, Wc;
if (!curfield || !strchr("db", curfield_type)) {
meep::master_fprintf(stderr, "The D or B field must be loaded first.\n");
return integral;
}
/* Python interface of MPB does not run under mpbi or MPI */
// #ifndef SCALAR_COMPLEX
// CHECK(0, "transformed_overlap(..) is not yet implemented for mpbi");
// /* NOTE: Not completely sure why the current implementation does not work for mpbi
// * (i.e for assumed-inversion): one clue is that running this with mpbi and the
// * error-check off gives symmetry eigenvalues whose norm are ≈(ni÷2+1)/ni (where
// * ni=n1=n2=n3) instead of near-unity (as they should be). This suggests we are not
// * counting the number of grid points correctly somehow: I think the root issue is
// * that we use the LOOP_XYZ macro, which has special handling for mbpi (i.e. only
// * "visits" the "inversion-reduced" part of the unitcell): but here, we actually
// * really want to (or at least assume to) visit _all_ the points in the unitcell. */
// #endif
// #ifdef HAVE_MPI
// CHECK(0, "transformed_overlap(..) is not yet implemented for MPI");
// /* NOTE: It seems there's some racey stuff going on with the MPI implementation,
// * unfortunately, so it doesn't end giving consistent (or even meaningful) results.
// * The issue could be that both `LOOP_XYZ` is distributed over workers _and_ that
// * `get_bloch_field_point_` also is (via the interpolation). I'm imagining that such
// * a naive "nested parallelism" doesn't jive here.
// * Long story short: disable it for now. */
// #endif
/* prepare before looping ... */
n1 = mdata->nx;
n2 = mdata->ny;
n3 = mdata->nz;
s1 = geometry_lattice.size.x / n1; /* pixel spacings */
s2 = geometry_lattice.size.y / n2;
s3 = geometry_lattice.size.z / n3;
c1 = n1 <= 1 ? 0 : geometry_lattice.size.x * 0.5; /* offsets (negative) */
c2 = n2 <= 1 ? 0 : geometry_lattice.size.y * 0.5;
c3 = n3 <= 1 ? 0 : geometry_lattice.size.z * 0.5;
detW = matrix3x3_determinant(W);
if (fabs(fabs(detW) - 1.0) > 1e-12) {
meep::master_fprintf(stderr, "valid symmetry operations {W|w} must have |det(W)| = 1\n");
return integral;
}
invW = matrix3x3_inverse(W);
/* W is specified in the lattice basis, but field *vectors* evaluated in real-space
* are in a Cartesian basis: when we transform the vector components, we must account
* for this difference. We transform W to a Cartesian basis Wc = RWR⁻¹ (with
* R = geometry_lattice.basis, a matrix w/ columns of Cartesian basis vectors) and
* then use Wc to transform vector fields. */
Wc = matrix3x3_mult(matrix3x3_mult(geometry_lattice.basis, W),
matrix3x3_inverse(geometry_lattice.basis));
/* hoist rescalings outside the loop (maybe licm takes care of it, but do it anyway) */
kvector.x *= TWOPI / (geometry_lattice.size.x == 0 ? 1e-20 : geometry_lattice.size.x);
kvector.y *= TWOPI / (geometry_lattice.size.y == 0 ? 1e-20 : geometry_lattice.size.y);
kvector.z *= TWOPI / (geometry_lattice.size.z == 0 ? 1e-20 : geometry_lattice.size.z);
/* loop over coordinates (introduces int vars `i1`, `i2`, `i3`, `xyz_index`) */
LOOP_XYZ(mdata) { /* implies two opening braces `{{` */
vector3 p, pt;
scalar_complex F[3], Ft[3], Ftemp[3], integrand, phase;
double deltaphi;
/* current lattice coordinate */
p.x = i1 * s1 - c1;
p.y = i2 * s2 - c2;
p.z = i3 * s3 - c3;
/* transformed coordinate pt = {W|w}⁻¹p = W⁻¹(p-w) since {W|w}⁻¹={W⁻¹|-W⁻¹w} */
pt = matrix3x3_vector3_mult(invW, vector3_minus(p, w));
/* Bloch field value at transformed coordinate pt: interpolation is needed to
* ensure generality in the case of fractional translations. */
get_bloch_field_point_(Ftemp, pt); /* assign `Ftemp` to field at `pt` (without eⁱᵏʳ factor) */
/* define `Ft` as the vector components of `Ftemp` transformed by `Wc`; we just
* write out the matrix-product manually here, for both real & imag parts */
Ft[0].re = Wc.c0.x * Ftemp[0].re + Wc.c1.x * Ftemp[1].re + Wc.c2.x * Ftemp[2].re;
Ft[0].im = Wc.c0.x * Ftemp[0].im + Wc.c1.x * Ftemp[1].im + Wc.c2.x * Ftemp[2].im;
Ft[1].re = Wc.c0.y * Ftemp[0].re + Wc.c1.y * Ftemp[1].re + Wc.c2.y * Ftemp[2].re;
Ft[1].im = Wc.c0.y * Ftemp[0].im + Wc.c1.y * Ftemp[1].im + Wc.c2.y * Ftemp[2].im;
Ft[2].re = Wc.c0.z * Ftemp[0].re + Wc.c1.z * Ftemp[1].re + Wc.c2.z * Ftemp[2].re;
Ft[2].im = Wc.c0.z * Ftemp[0].im + Wc.c1.z * Ftemp[1].im + Wc.c2.z * Ftemp[2].im;
/* get the Bloch field value at current point `p` (without eⁱᵏʳ factor).
* We multiply the input field `F` (either B or D-field) with μ⁻¹ or ε⁻¹ to get
* H- or E-fields, as the relevant overlap is ⟨F|Ft⟩ = ⟨H|Bt⟩ or ⟨E|Dt⟩, with
* t-postscript denoting a field transformed by {W|w}. Here, we essentially
* adapt some boiler-plate code from compute_field_energy_internal in fields.c */
if (curfield_type == 'd') {
assign_symmatrix_vector(F, mdata->eps_inv[xyz_index], curfield + 3 * xyz_index);
}
else if (curfield_type == 'b' && mdata->mu_inv != NULL) {
assign_symmatrix_vector(F, mdata->mu_inv[xyz_index], curfield + 3 * xyz_index);
}
else {
F[0] = curfield[3 * xyz_index];
F[1] = curfield[3 * xyz_index + 1];
F[2] = curfield[3 * xyz_index + 2];
}
/* inner product of F and Ft={W|w}F in Bloch form */
CASSIGN_CONJ_MULT(integrand, F[0], Ft[0]); /* add adjoint(F)*Ft to integrand */
CACCUMULATE_SUM_CONJ_MULT(integrand, F[1], Ft[1]);
CACCUMULATE_SUM_CONJ_MULT(integrand, F[2], Ft[2]);
/* include Bloch phases */
deltaphi = kvector.x * (pt.x - p.x) + kvector.y * (pt.y - p.y) + kvector.z * (pt.z - p.z);
CASSIGN_SCALAR(phase, cos(deltaphi), sin(deltaphi));
/* add integrand-contribution to integral */
integral.re += CSCALAR_MULT_RE(integrand, phase);
integral.im += CSCALAR_MULT_IM(integrand, phase);
}
}
}
integral.re *= vol / H.N;
integral.im *= vol / H.N;
mpi_allreduce(&integral, &integral_sum, 2, number, MPI_DOUBLE, MPI_SUM, mpb_comm);
if (curfield_type == 'b') { /* H & B are pseudovectors => transform includes det(W) */
integral_sum.re *= detW;
integral_sum.im *= detW;
}
return integral_sum;
}
cnumber mode_solver::compute_symmetry(int which_band, matrix3x3 W, vector3 w) {
cnumber symval;
get_bfield(which_band); // _without_ Bloch phase
symval = transformed_overlap(W, w);
return symval;
}
} // namespace meep_mpb
|