1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy import sparse
import meep as mp
ABC = ABCMeta("ABC", (object,), {"__slots__": ()}) # compatible with Python 2 and 3
# ----------------------------------------------------------------------
# Basis is the abstract base class from which classes describing specific
# basis sets should inherit.
# ----------------------------------------------------------------------
class Basis(ABC):
""" """
def __init__(
self,
rho_vector=None,
volume=None,
size=None,
center=mp.Vector3(),
):
self.volume = volume or mp.Volume(center=center, size=size)
self.rho_vector = rho_vector
def func(self):
def _f(p):
return self(p)
return _f
@abstractmethod
def get_basis_vjp(self):
raise NotImplementedError("derived class must implement get_basis_vjp method")
@abstractmethod
def __call__(self, p=[0.0, 0.0]):
raise NotImplementedError("derived class must implement __call__() method")
def set_rho_vector(self, rho_vector):
self.rho_vector = rho_vector
# -------------------------------- #
# Bilinear Interpolation Basis class
# -------------------------------- #
class BilinearInterpolationBasis(Basis):
"""
Simple bilinear interpolation basis set.
"""
def __init__(self, resolution, symmetry=None, **kwargs):
self.dim = 2
super().__init__(**kwargs)
# Generate interpolation grid
self.symmetry = [] if symmetry is None or len(symmetry) == 0 else symmetry
if mp.X in set(self.symmetry):
self.Nx = int(resolution * self.volume.size.x / 2) + 1
self.rho_x = np.linspace(
self.volume.center.x,
self.volume.center.x + self.volume.size.x / 2,
self.Nx,
)
self.mirror_X = True
else:
self.Nx = int(resolution * self.volume.size.x) + 1
self.rho_x = np.linspace(
self.volume.center.x - self.volume.size.x / 2,
self.volume.center.x + self.volume.size.x / 2,
self.Nx,
)
self.mirror_X = False
if mp.Y in set(self.symmetry):
self.Ny = int(resolution * self.volume.size.y / 2) + 1
self.rho_y = np.linspace(
self.volume.center.y,
self.volume.center.y + self.volume.size.y / 2,
self.Ny,
)
self.mirror_Y = True
else:
self.Ny = int(resolution * self.volume.size.y) + 1
self.rho_y = np.linspace(
self.volume.center.y - self.volume.size.y / 2,
self.volume.center.y + self.volume.size.y / 2,
self.Ny,
)
self.mirror_Y = False
self.num_design_params = self.Nx * self.Ny
if self.rho_vector is None:
self.rho_vector = np.ones((self.num_design_params,))
def __call__(self, p):
x = (
2 * self.volume.center.x - p.x
if self.mirror_X and p.x < self.volume.center.x
else p.x
)
y = (
2 * self.volume.center.y - p.y
if self.mirror_Y and p.y < self.volume.center.y
else p.y
)
weights, interp_idx = self.get_bilinear_row(
x, y, self.rho_x, self.rho_y
) # ignore z coordinate
return np.dot(self.rho_vector[interp_idx], weights)
def get_basis_vjp(self, dJ_deps, design_grid):
"""get vector jacobian product of interpolator"""
dg_Nx, dg_Ny, Nz, Nf = dJ_deps.shape # get important design grid dimensions
x_grid = design_grid.x
y_grid = design_grid.y
z_grid = design_grid.z
# take care of symmetries
if self.mirror_X:
dJ_deps = dJ_deps[int(dg_Nx / 2) :, :, :, :] * 2
x_grid = x_grid[int(dg_Nx / 2) :]
if self.mirror_Y:
dJ_deps = dJ_deps[:, int(dg_Ny / 2) :, :, :] * 2
y_grid = y_grid[int(dg_Ny / 2) :]
dg_Nx, dg_Ny, Nz, Nf = dJ_deps.shape # recalculate
Nx, Ny = (
self.rho_x.size,
self.rho_y.size,
) # get important interpolator dimensions
# same interpolation matrix for all frequencies and all coordinates in Z direction
A = self.gen_interpolation_matrix(
self.rho_x, self.rho_y, x_grid, y_grid, z_grid
)
# TODO ditch the for loops
dJ_dp = np.zeros((Nx * Ny, Nf))
for fi in range(Nf):
for zi in range(Nz):
dJ_dp[:, fi] += np.matmul(
dJ_deps[:, :, zi, fi].reshape(dg_Nx * dg_Ny, order="C"), A
)
return dJ_dp
def get_bilinear_coefficients(self, x, x1, x2, y, y1, y2):
"""
Calculates the bilinear interpolation coefficients for a single point at (x,y).
Assumes that the user already knows the four closest points and provides the corresponding
(x1,x2) and(y1,y2) coordinates.
"""
b11 = ((x - x2) * (y - y2)) / ((x1 - x2) * (y1 - y2))
b12 = -((x - x2) * (y - y1)) / ((x1 - x2) * (y1 - y2))
b21 = -((x - x1) * (y - y2)) / ((x1 - x2) * (y1 - y2))
b22 = ((x - x1) * (y - y1)) / ((x1 - x2) * (y1 - y2))
return [b11, b12, b21, b22]
def get_bilinear_row(self, rx, ry, rho_x, rho_y):
"""
Calculates a vector of bilinear interpolation weights that can be used
in an inner product with the neighboring function values, or placed
inside of an interpolation matrix.
"""
Nx = rho_x.size
Ny = rho_y.size
# binary search in x direction to get x1 and x2
xi2 = np.searchsorted(rho_x, rx, side="left")
if xi2 <= 0: # extrapolation (be careful!)
xi1 = 0
xi2 = 1
elif xi2 >= Nx - 1: # extrapolation (be careful!)
xi1 = Nx - 2
xi2 = Nx - 1
else:
xi1 = xi2 - 1
x1 = rho_x[xi1]
x2 = rho_x[xi2]
# binary search in y direction to get y1 and y2
yi2 = np.searchsorted(rho_y, ry, side="left")
if yi2 <= 0: # extrapolation (be careful!)
yi1 = 0
yi2 = 1
elif yi2 >= Ny - 1: # extrapolation (be careful!)
yi1 = Ny - 2
yi2 = Ny - 1
else:
yi1 = yi2 - 1
y1 = rho_y[yi1]
y2 = rho_y[yi2]
# get weights
weights = self.get_bilinear_coefficients(rx, x1, x2, ry, y1, y2)
# get location of nearest neigbor interpolation points
interp_idx = np.array(
[xi1 * Ny + yi1, xi1 * Ny + yi2, (xi2) * Ny + yi1, (xi2) * Ny + yi2],
dtype=np.int64,
)
return weights, interp_idx
def gen_interpolation_matrix(
self,
rho_x,
rho_y,
rho_x_interp,
rho_y_interp,
rho_z_interp,
):
"""
Generates a bilinear interpolation matrix.
Arguments:
rho_x ................ [N,] numpy array - original x array mapping to povided data
rho_y ................ [N,] numpy array - original y array mapping to povided data
rho_x_interp ......... [N,] numpy array - new x array mapping to desired interpolated data
rho_y_interp ......... [N,] numpy array - new y array mapping to desired interpolated data
Returns:
A .................... [N,M] sparse matrix - interpolation matrix
"""
Nx = rho_x.size
Ny = rho_y.size
Nx_interp = np.array(rho_x_interp).size
Ny_interp = np.array(rho_y_interp).size
Nz_interp = np.array(rho_y_interp).size
input_dimension = Nx * Ny
output_dimension = Nx_interp * Ny_interp
interp_weights = np.zeros(4 * output_dimension)
row_ind = np.zeros(4 * output_dimension, dtype=np.int64)
col_ind = np.zeros(4 * output_dimension, dtype=np.int64)
ri = 0
for rx in rho_x_interp:
for ry in rho_y_interp:
# get weights
weights, interp_idx = self.get_bilinear_row(rx, ry, rho_x, rho_y)
# populate sparse matrix vectors
interp_weights[4 * ri : 4 * (ri + 1)] = weights
row_ind[4 * ri : 4 * (ri + 1)] = np.array(
[ri, ri, ri, ri], dtype=np.int64
)
col_ind[4 * ri : 4 * (ri + 1)] = interp_idx
ri += 1
return sparse.coo_matrix(
(interp_weights, (row_ind, col_ind)),
shape=(output_dimension, input_dimension),
)
|