File: filter_source.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (176 lines) | stat: -rw-r--r-- 6,008 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
from scipy import linalg, signal

from meep import CustomSource


class FilteredSource(CustomSource):
    def __init__(
        self,
        center_frequency,
        frequencies,
        frequency_response,
        dt,
        time_src=None,
    ):
        dt = dt / 2  # divide by two to compensate for staggered E,H time interval
        self.dt = dt
        self.frequencies = frequencies
        self.center_frequencies = frequencies

        # For now, the basis functions cannot overlap much in the frequency domain. Otherwise, the
        # resulting nodes are wildly large and induce numerical precision errors. We can always
        # produce a safe simulation by forcing the length of each basis function to meet the minimum
        # frequency requirements. This method still minimizes storage requirements.
        self.T = np.max(np.abs(1 / np.diff(frequencies)))
        self.N = np.rint(self.T / self.dt)
        self.t = np.arange(0, dt * (self.N), dt)
        self.n = np.arange(self.N)
        f = self.func()

        # frequency bandwidth of the Nuttall window function
        fwidth = self.nuttall_bandwidth()

        self.bf = [
            lambda t, i=i: 0
            if t > self.T
            else (
                self.nuttall(t, self.center_frequencies)
                / (self.dt / np.sqrt(2 * np.pi))
            )[i]
            for i in range(len(self.center_frequencies))
        ]
        self.time_src_bf = [
            CustomSource(
                src_func=bfi,
                center_frequency=center_frequency,
                is_integrated=False,
                end_time=self.T,
                fwidth=fwidth,
            )
            for bfi in self.bf
        ]

        if time_src:
            # get the cutoff of the input signal
            signal_t = np.array(
                [time_src.swigobj.current(ti, dt) for ti in self.t]
            )  # time domain signal
            signal_dtft = self.dtft(signal_t, self.frequencies)
        else:
            signal_dtft = 1

        # multiply sampled dft of input signal with filter transfer function
        H = signal_dtft * frequency_response

        # estimate the impulse response using a sinc function RBN
        self.nodes, self.err = self.estimate_impulse_response(H)

        # initialize super
        super().__init__(
            src_func=f,
            center_frequency=center_frequency,
            is_integrated=False,
            end_time=self.T,
            fwidth=fwidth,
        )

    def cos_window_td(self, a, t, f0):
        cos_sum = np.sum(
            [
                (-1) ** k * a[k] * np.cos(2 * np.pi * t * k / self.T)
                for k in range(len(a))
            ],
            axis=0,
        )
        return np.exp(-1j * 2 * np.pi * f0 * t) * (cos_sum)

    def cos_window_fd(self, a, f, f0):
        df = 1 / (self.N * self.dt)
        cos_sum = a[0] * self.sinc(f, f0)
        for k in range(1, len(a)):
            cos_sum += (-1) ** k * a[k] / 2 * self.sinc(f, f0 - k * df) + (-1) ** k * a[
                k
            ] / 2 * self.sinc(f, f0 + k * df)
        return cos_sum

    def sinc(self, f, f0):
        num = np.where(
            f == f0,
            self.N + 1,
            (1 - np.exp(1j * (self.N + 1) * (2 * np.pi) * (f - f0) * self.dt)),
        )
        den = np.where(f == f0, 1, (1 - np.exp(1j * (2 * np.pi) * (f - f0) * self.dt)))
        return num / den

    def rect(self, t, f0):
        n = np.rint((t) / self.dt)
        return np.where(
            n.any() < 0.0 or n.any() > self.N, 0, np.exp(-1j * 2 * np.pi * f0 * t)
        )

    def hann(self, t, f0):
        a = [0.5, 0.5]
        return self.cos_window_td(a, t, f0)

    def hann_dtft(self, f, f0):
        a = [0.5, 0.5]
        return self.cos_window_fd(a, f, f0)

    def nuttall(self, t, f0):
        a = [0.355768, 0.4873960, 0.144232, 0.012604]
        return self.cos_window_td(a, t, f0)

    def nuttall_dtft(self, f, f0):
        a = [0.355768, 0.4873960, 0.144232, 0.012604]
        return self.cos_window_fd(a, f, f0)

    ## compute the bandwidth of the DTFT of the Nuttall window function
    ## (magnitude) assuming it has decayed from its peak value by some
    ## tolerance by fitting it to an asymptotic power law of the form
    ## C / f^3 where C is a constant and f is the frequency
    def nuttall_bandwidth(self):
        tol = 1e-7
        fwidth = 1 / (self.N * self.dt)
        frq_inf = 10000 * fwidth
        na_dtft = self.nuttall_dtft(frq_inf, 0)
        coeff = frq_inf**3 * np.abs(na_dtft)
        na_dtft_max = self.nuttall_dtft(0, 0)
        bw = 2 * np.power(coeff / (tol * na_dtft_max), 1 / 3)
        return bw.real

    def dtft(self, y, f):
        return (
            np.matmul(
                np.exp(1j * 2 * np.pi * f[:, np.newaxis] * np.arange(y.size) * self.dt),
                y,
            )
            * self.dt
            / np.sqrt(2 * np.pi)
        )

    def __call__(self, t):
        if t > self.T:
            return 0
        vec = self.nuttall(t, self.center_frequencies) / (
            self.dt / np.sqrt(2 * np.pi)
        )  # compensate for meep dtft
        return np.inner(vec, self.nodes)

    def func(self):
        def _f(t):
            return self(t)

        return _f

    def estimate_impulse_response(self, H):
        # Use vandermonde matrix to calculate weights of each gaussian. Each window is centered at each frequency point.
        # TODO: come up with a more sophisticated way to choose temporal window size and basis locations
        # that will minimize l2 estimation error and the node weights (since matrix is ill-conditioned)
        vandermonde = self.nuttall_dtft(
            self.frequencies[:, np.newaxis], self.center_frequencies[np.newaxis, :]
        )
        nodes = np.matmul(linalg.pinv(vandermonde), H.T)
        H_hat = np.matmul(vandermonde, nodes)
        l2_err = np.sum(np.abs(H - H_hat.T) ** 2 / np.abs(H) ** 2)
        return nodes, l2_err