1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
"""
General filter functions to be used in other projection and morphological transform routines.
"""
import numpy as np
from autograd import numpy as npa
from scipy import signal, special
import meep as mp
def _proper_pad(x, n):
"""
Parameters
----------
x : array_like (2D)
Input array. Must be 2D.
n : int
Total size to be padded to.
"""
N = x.size
k = n - (2 * N - 1)
return np.concatenate((x, np.zeros((k,)), np.flipud(x[1:])))
def _centered(arr, newshape):
"""Helper function that reformats the padded array of the fft filter operation.
Borrowed from scipy:
https://github.com/scipy/scipy/blob/v1.4.1/scipy/signal/signaltools.py#L263-L270
"""
# Return the center newshape portion of the array.
newshape = np.asarray(newshape)
currshape = np.array(arr.shape)
startind = (currshape - newshape) // 2
endind = startind + newshape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def _edge_pad(arr, pad):
# fill sides
left = npa.tile(arr[0, :], (pad[0][0], 1)) # left side
right = npa.tile(arr[-1, :], (pad[0][1], 1)) # right side
top = npa.tile(arr[:, 0], (pad[1][0], 1)).transpose() # top side
bottom = npa.tile(arr[:, -1], (pad[1][1], 1)).transpose() # bottom side)
# fill corners
top_left = npa.tile(arr[0, 0], (pad[0][0], pad[1][0])) # top left
top_right = npa.tile(arr[-1, 0], (pad[0][1], pad[1][0])) # top right
bottom_left = npa.tile(arr[0, -1], (pad[0][0], pad[1][1])) # bottom left
bottom_right = npa.tile(arr[-1, -1], (pad[0][1], pad[1][1])) # bottom right
return npa.concatenate(
(
npa.concatenate((top_left, top, top_right)),
npa.concatenate((left, arr, right)),
npa.concatenate((bottom_left, bottom, bottom_right)),
),
axis=1,
)
def simple_2d_filter(x, h):
"""A simple 2d filter algorithm that is differentiable with autograd.
Uses a 2D fft approach since it is typically faster and preserves the shape
of the input and output arrays.
The ffts pad the operation to prevent any circular convolution garbage.
Parameters
----------
x : array_like (2D)
Input array to be filtered. Must be 2D.
h : array_like (2D)
Filter kernel (before the DFT). Must be same size as `x`
Returns
-------
array_like (2D)
The output of the 2d convolution.
"""
(kx, ky) = x.shape
x = _edge_pad(x, ((kx, kx), (ky, ky)))
return _centered(
npa.real(npa.fft.ifft2(npa.fft.fft2(x) * npa.fft.fft2(h))), (kx, ky)
)
def cylindrical_filter(x, radius, Lx, Ly, resolution):
"""A uniform cylindrical filter [1]. Typically allows for sharper transitions.
Parameters
----------
x : array_like (2D)
Design parameters
radius : float
Filter radius (in "meep units")
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like (2D)
Filtered design parameters.
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
Nx = int(Lx * resolution)
Ny = int(Ly * resolution)
x = x.reshape(Nx, Ny) # Ensure the input is 2D
xv = np.arange(0, Lx / 2, 1 / resolution)
yv = np.arange(0, Ly / 2, 1 / resolution)
cylindrical = lambda a: np.where(a <= radius, 1, 0)
hx = cylindrical(xv)
hy = cylindrical(yv)
h = np.outer(_proper_pad(hx, 3 * Nx), _proper_pad(hy, 3 * Ny))
# Normalize kernel
h = h / np.sum(h.flatten()) # Normalize the filter
# Filter the response
return simple_2d_filter(x, h)
def conic_filter(x, radius, Lx, Ly, resolution):
"""A linear conic filter, also known as a "Hat" filter in the literature [1].
Parameters
----------
x : array_like (2D)
Design parameters
radius : float
Filter radius (in "meep units")
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like (2D)
Filtered design parameters.
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
Nx = int(Lx * resolution)
Ny = int(Ly * resolution)
x = x.reshape(Nx, Ny) # Ensure the input is 2D
xv = np.arange(0, Lx / 2, 1 / resolution)
yv = np.arange(0, Ly / 2, 1 / resolution)
conic = lambda a: np.where(np.abs(a**2) <= radius**2, (1 - a / radius), 0)
hx = conic(xv)
hy = conic(yv)
h = np.outer(_proper_pad(hx, 3 * Nx), _proper_pad(hy, 3 * Ny))
# Normalize kernel
h = h / np.sum(h.flatten()) # Normalize the filter
# Filter the response
return simple_2d_filter(x, h)
def gaussian_filter(x, sigma, Lx, Ly, resolution):
"""A simple gaussian filter of the form exp(-x **2 / sigma ** 2) [1].
Parameters
----------
x : array_like (2D)
Design parameters
sigma : float
Filter radius (in "meep units")
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like (2D)
Filtered design parameters.
References
----------
[1] Wang, E. W., Sell, D., Phan, T., & Fan, J. A. (2019). Robust design of
topology-optimized metasurfaces. Optical Materials Express, 9(2), 469-482.
"""
Nx = int(Lx * resolution)
Ny = int(Ly * resolution)
x = x.reshape(Nx, Ny) # Ensure the input is 2D
xv = np.arange(0, Lx / 2, 1 / resolution)
yv = np.arange(0, Ly / 2, 1 / resolution)
gaussian = lambda a: np.exp(-(a**2) / sigma**2)
hx = gaussian(xv)
hy = gaussian(yv)
h = np.outer(_proper_pad(hx, 3 * Nx), _proper_pad(hy, 3 * Ny))
# Normalize kernel
h = h / np.sum(h.flatten()) # Normalize the filter
# Filter the response
return simple_2d_filter(x, h)
"""
# ------------------------------------------------------------------------------------ #
Erosion and dilation operators
"""
def exponential_erosion(x, radius, beta, Lx, Ly, resolution):
"""Performs and exponential erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Sigmund, O. (2007). Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization, 33(4-5), 401-424.
[2] Schevenels, M., & Sigmund, O. (2016). On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization. Structural
and Multidisciplinary Optimization, 54(1), 15-21.
"""
x_hat = npa.exp(beta * (1 - x))
return (
1
- npa.log(cylindrical_filter(x_hat, radius, Lx, Ly, resolution).flatten())
/ beta
)
def exponential_dilation(x, radius, beta, Lx, Ly, resolution):
"""Performs a exponential dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Sigmund, O. (2007). Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization, 33(4-5), 401-424.
[2] Schevenels, M., & Sigmund, O. (2016). On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization. Structural
and Multidisciplinary Optimization, 54(1), 15-21.
"""
x_hat = npa.exp(beta * x)
return (
npa.log(cylindrical_filter(x_hat, radius, Lx, Ly, resolution).flatten()) / beta
)
def heaviside_erosion(x, radius, beta, Lx, Ly, resolution):
"""Performs a heaviside erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution).flatten()
return npa.exp(-beta * (1 - x_hat)) + npa.exp(-beta) * (1 - x_hat)
def heaviside_dilation(x, radius, beta, Lx, Ly, resolution):
"""Performs a heaviside dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution).flatten()
return 1 - npa.exp(-beta * x_hat) + npa.exp(-beta) * x_hat
def geometric_erosion(x, radius, alpha, Lx, Ly, resolution):
"""Performs a geometric erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(x + alpha)
return (
npa.exp(cylindrical_filter(x_hat, radius, Lx, Ly, resolution)).flatten() - alpha
)
def geometric_dilation(x, radius, alpha, Lx, Ly, resolution):
"""Performs a geometric dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(1 - x + alpha)
return (
-npa.exp(cylindrical_filter(x_hat, radius, Lx, Ly, resolution)).flatten()
+ alpha
+ 1
)
def harmonic_erosion(x, radius, alpha, Lx, Ly, resolution):
"""Performs a harmonic erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (x + alpha)
return 1 / cylindrical_filter(x_hat, radius, Lx, Ly, resolution).flatten() - alpha
def harmonic_dilation(x, radius, alpha, Lx, Ly, resolution):
"""Performs a harmonic dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (1 - x + alpha)
return (
1 - 1 / cylindrical_filter(x_hat, radius, Lx, Ly, resolution).flatten() + alpha
)
"""
# ------------------------------------------------------------------------------------ #
Projection filters
"""
def tanh_projection(x, beta, eta):
"""Projection filter that thresholds the input parameters between 0 and 1. Typically
the "strongest" projection.
Parameters
----------
x : array_like
Design parameters
beta : float
Thresholding parameter (0 to infinity). Dictates how "binary" the output will be.
eta: float
Threshold point (0 to 1)
Returns
-------
array_like
Projected and flattened design parameters.
References
----------
[1] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and robust
formulations in topology optimization. Structural and Multidisciplinary Optimization, 43(6), 767-784.
"""
return (npa.tanh(beta * eta) + npa.tanh(beta * (x - eta))) / (
npa.tanh(beta * eta) + npa.tanh(beta * (1 - eta))
)
def heaviside_projection(x, beta, eta):
"""Projection filter that thresholds the input parameters between 0 and 1.
Parameters
----------
x : array_like
Design parameters
beta : float
Thresholding parameter (0 to infinity). Dictates how "binary" the output will be.
eta: float
Threshold point (0 to 1)
Returns
-------
array_like
Projected and flattened design parameters.
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
case1 = eta * npa.exp(-beta * (eta - x) / eta) - (eta - x) * npa.exp(-beta)
case2 = (
1
- (1 - eta) * npa.exp(-beta * (x - eta) / (1 - eta))
- (eta - x) * npa.exp(-beta)
)
return npa.where(x < eta, case1, case2)
"""
# ------------------------------------------------------------------------------------ #
Length scale operations
"""
def get_threshold_wang(delta, sigma):
"""Calculates the threshold point according to the gaussian filter radius (`sigma`) and
the perturbation parameter (`sigma`) needed to ensure the proper length
scale and morphological transformation according to Wang et. al. [2].
Parameters
----------
sigma : float
Smoothing radius (in meep units)
delta : float
Perturbation parameter (in meep units)
Returns
-------
float
Threshold point (`eta`)
References
----------
[1] Wang, F., Jensen, J. S., & Sigmund, O. (2011). Robust topology optimization of
photonic crystal waveguides with tailored dispersion properties. JOSA B, 28(3), 387-397.
[2] Wang, E. W., Sell, D., Phan, T., & Fan, J. A. (2019). Robust design of
topology-optimized metasurfaces. Optical Materials Express, 9(2), 469-482.
"""
return 0.5 - special.erf(delta / sigma)
def get_eta_from_conic(b, R):
"""Extracts the eroded threshold point (`eta_e`) for a conic filter given the desired
minimum length (`b`) and the filter radius (`R`). This only works for conic filters.
Note that the units for `b` and `R` can be arbitrary so long as they are consistent.
Results in paper were thresholded using a "tanh" Heaviside projection.
Parameters
----------
b : float
Desired minimum length scale.
R : float
Conic filter radius
Returns
-------
float
The eroded threshold point (1-eta)
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
norm_length = b / R
if norm_length < 0:
return 0
elif norm_length < 1:
return 0.25 * norm_length**2 + 0.5
elif norm_length < 2:
return -0.25 * norm_length**2 + norm_length
else:
return 1
def get_conic_radius_from_eta_e(b, eta_e):
"""Calculates the corresponding filter radius given the minimum length scale (b)
and the desired eroded threshold point (eta_e).
Parameters
----------
b : float
Desired minimum length scale.
eta_e : float
Eroded threshold point (1-eta)
Returns
-------
float
Conic filter radius.
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
if (eta_e >= 0.5) and (eta_e < 0.75):
return b / (2 * np.sqrt(eta_e - 0.5))
elif (eta_e >= 0.75) and (eta_e <= 1):
return b / (2 - 2 * np.sqrt(1 - eta_e))
else:
raise ValueError(
"The erosion threshold point (eta_e) must be between 0.5 and 1."
)
def indicator_solid(x, c, filter_f, threshold_f, resolution):
"""Calculates the indicator function for the void phase needed for minimum length optimization [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_e : float
Erosion threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
Returns
-------
array_like
Indicator value
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x)
design_field = threshold_f(filtered_field)
gradient_filtered_field = npa.gradient(filtered_field)
grad_mag = (gradient_filtered_field[0] * resolution) ** 2 + (
gradient_filtered_field[1] * resolution
) ** 2
if grad_mag.ndim != 2:
raise ValueError(
"The gradient fields must be 2 dimensional. Check input array and filter functions."
)
return design_field * npa.exp(-c * grad_mag)
def constraint_solid(x, c, eta_e, filter_f, threshold_f, resolution):
"""Calculates the constraint function of the solid phase needed for minimum length optimization [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_e : float
Erosion threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
Returns
-------
float
Constraint value
Example
-------
>> g_s = constraint_solid(x,c,eta_e,filter_f,threshold_f) # constraint
>> g_s_grad = grad(constraint_solid,0)(x,c,eta_e,filter_f,threshold_f) # gradient
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x)
I_s = indicator_solid(
x.reshape(filtered_field.shape), c, filter_f, threshold_f, resolution
).flatten()
return npa.mean(I_s * npa.minimum(filtered_field.flatten() - eta_e, 0) ** 2)
def indicator_void(x, c, filter_f, threshold_f, resolution):
"""Calculates the indicator function for the void phase needed for minimum length optimization [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_d : float
Dilation threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
Returns
-------
array_like
Indicator value
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x).reshape(x.shape)
design_field = threshold_f(filtered_field)
gradient_filtered_field = npa.gradient(filtered_field)
grad_mag = (gradient_filtered_field[0] * resolution) ** 2 + (
gradient_filtered_field[1] * resolution
) ** 2
if grad_mag.ndim != 2:
raise ValueError(
"The gradient fields must be 2 dimensional. Check input array and filter functions."
)
return (1 - design_field) * npa.exp(-c * grad_mag)
def constraint_void(x, c, eta_d, filter_f, threshold_f, resolution):
"""Calculates the constraint function of the void phase needed for minimum length optimization [1].
Parameters
----------
x : array_like
Design parameters
c : float
Decay rate parameter (1e0 - 1e8)
eta_d : float
Dilation threshold limit (0-1)
filter_f : function_handle
Filter function. Must be differntiable by autograd.
threshold_f : function_handle
Threshold function. Must be differntiable by autograd.
Returns
-------
float
Constraint value
Example
-------
>> g_v = constraint_void(p,c,eta_d,filter_f,threshold_f) # constraint
>> g_v_grad = tensor_jacobian_product(constraint_void,0)(p,c,eta_d,filter_f,threshold_f,g_s) # gradient
References
----------
[1] Zhou, M., Lazarov, B. S., Wang, F., & Sigmund, O. (2015). Minimum length scale in topology optimization by
geometric constraints. Computer Methods in Applied Mechanics and Engineering, 293, 266-282.
"""
filtered_field = filter_f(x)
I_v = indicator_void(
x.reshape(filtered_field.shape), c, filter_f, threshold_f, resolution
).flatten()
return npa.mean(I_v * npa.minimum(eta_d - filtered_field.flatten(), 0) ** 2)
def gray_indicator(x):
"""Calculates a measure of "grayness" according to [1].
Lower numbers ( < 2%) indicate a good amount of binarization [1].
Parameters
----------
x : array_like
Filtered and thresholded design parameters (between 0 and 1)
Returns
-------
float
Measure of "grayness" (in percent)
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
return npa.mean(4 * x.flatten() * (1 - x.flatten())) * 100
|