1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
"""Wrapper for converting a Meep simulation into a differentiable JAX callable function.
Usage example:
```
import jax.numpy as jnp
import meep as mp
import meep.adjoint as mpa
sources = [
mp.EigenModeSource(...)
]
monitors = [
mpa.EigenmodeCoefficient(...),
mpa.EigenmodeCoefficient(...),
]
design_regions = [
mpa.DesignRegion(...)
]
frequencies = [1/1.55, 1/1.60, 1/1.65, ...]
simulation = mp.Simulation(...)
wrapped_meep = MeepJaxWrapper(
simulation,
sources,
monitors,
design_regions,
frequencies,
measurement_interval = 50.0,
dft_field_components = (mp.Ez,),
dft_threshold = 1e-6,
minimum_run_time = 0,
maximum_run_time = onp.inf,
until_after_sources = True
)
def loss(x):
monitor_values = wrapped_meep([x])
t = monitor_values[0,:] / monitor_values[1,:]
# Mean transmission vs wavelength
return jnp.mean(jnp.abs(t))
value, grad = jax.value_and_grad(loss)(x)
```
"""
from typing import Callable, Iterable, List, Tuple
import jax
import jax.numpy as jnp
import numpy as onp
import meep as mp
from . import DesignRegion, EigenmodeCoefficient, utils
_norm_fn = onp.linalg.norm
_reduce_fn = onp.max
class MeepJaxWrapper:
"""Wraps a Meep simulation object into a JAX-differentiable callable.
Attributes:
simulation: the pre-configured Meep simulation object.
sources: a list of Meep sources for the forward simulation.
monitors: a list of eigenmode coefficient monitors from the `meep.adjoint`
module.
design_regions: a list of design regions from the `meep.adjoint` module.
frequencies: the list of frequencies, in normalized Meep units.
measurement_interval: the time interval between DFT field convergence
measurements, in Meep time units. The default value is 50.
dft_field_components: a list of Meep field components, such as `mp.Ex`,
`mp.Hy`, etc, whose DFT will be monitored for convergence to stop the
simulation. The default is `mp.Ez`.
dft_threshold: the threshold for DFT field convergence. Once the norm of the
change in the fields (the maximum over all design regions and field
components) is less than this value, the simulation will be stopped. The
default value is 1e-6.
minimum_run_time: the minimum run time of the simulation, in Meep time
units. The default value is 0.
maximum_run_time: the maximum run time of the simulation, in Meep time
units. The default value is infinity.
until_after_sources: whether `maximum_run_time` should be ignored until the
sources have turned off. This parameter specifies whether `until` or
`until_after_sources` is used. See
https://meep.readthedocs.io/en/latest/Python_User_Interface/#Simulation
for more information. The default is true.
"""
_log_fn = print
def __init__(
self,
simulation: mp.Simulation,
sources: List[mp.Source],
monitors: List[EigenmodeCoefficient],
design_regions: List[DesignRegion],
frequencies: List[float],
dft_threshold: float = 1e-11,
minimum_run_time: float = 0,
maximum_run_time: float = onp.inf,
until_after_sources: bool = True,
finite_difference_step: float = utils.FD_DEFAULT,
):
self.simulation = simulation
self.sources = sources
self.monitors = monitors
self.design_regions = design_regions
self.frequencies = frequencies
self.dft_threshold = dft_threshold
self.minimum_run_time = minimum_run_time
self.maximum_run_time = maximum_run_time
self.until_after_sources = until_after_sources
self.finite_difference_step = finite_difference_step
self._simulate_fn = self._initialize_callable()
def __call__(self, designs: List[jnp.ndarray]) -> jnp.ndarray:
"""Performs a Meep simulation, taking a list of designs and returning mode overlaps.
Args:
designs: a list of design variables as 1D, 2D, or 3D JAX arrays. Valid shapes for
design variables are (Nx, Ny, Nz) where Nx{y,z} match the elements of the
`grid_size` constructor argument of Meep's `MaterialGrid` used for the
corresponding design region. Singleton dimensions of the `grid_size` may be
omitted from the corresponding design variable. For example, a design variable
with a shape of either (10, 20) or (10, 20, 1) would be compatible with a
`grid_size` of (10, 20, 1). Similarly, a design variable with shapes of (25,),
(25, 1), or (25, 1, 1) would be compatible with a `grid_size` of (25, 1, 1).
Returns:
a complex-valued JAX ndarray of differentiable mode monitor overlaps values with
a shape of (num monitors, num frequencies).
"""
return self._simulate_fn(designs)
def _run_fwd_simulation(
self, design_variables: Iterable[onp.ndarray]
) -> (jnp.ndarray, List[List[mp.DftFields]]):
"""Runs forward simulation, returning monitor values and design region fields."""
utils.validate_and_update_design(self.design_regions, design_variables)
self.simulation.reset_meep()
self.simulation.change_sources(self.sources)
utils.register_monitors(self.monitors, self.frequencies)
fwd_design_region_monitors = utils.install_design_region_monitors(
self.simulation,
self.design_regions,
self.frequencies,
)
self.simulation.init_sim()
sim_run_args = {
"until_after_sources"
if self.until_after_sources
else "until": mp.stop_when_dft_decayed(
self.dft_threshold, self.minimum_run_time, self.maximum_run_time
)
}
self.simulation.run(**sim_run_args)
monitor_values = utils.gather_monitor_values(self.monitors)
return (jnp.asarray(monitor_values), fwd_design_region_monitors)
def _run_adjoint_simulation(
self, monitor_values_grad: onp.ndarray
) -> List[List[mp.DftFields]]:
"""Runs adjoint simulation, returning design region fields."""
if not self.design_regions:
raise RuntimeError(
"An adjoint simulation was attempted when no design "
"regions are present."
)
adjoint_sources = utils.create_adjoint_sources(
self.monitors, monitor_values_grad
)
# TODO refactor with optimization_problem.py #
self.simulation.restart_fields()
self.simulation.clear_dft_monitors()
self.simulation.change_sources(adjoint_sources)
# #
adj_design_region_monitors = utils.install_design_region_monitors(
self.simulation,
self.design_regions,
self.frequencies,
)
self.simulation.init_sim()
sim_run_args = {
"until_after_sources"
if self.until_after_sources
else "until": mp.stop_when_dft_decayed(
self.dft_threshold, self.minimum_run_time, self.maximum_run_time
)
}
self.simulation.run(**sim_run_args)
return adj_design_region_monitors
def _calculate_vjps(
self,
fwd_fields: List[List[mp.DftFields]],
adj_fields: List[List[mp.DftFields]],
design_variable_shapes: List[Tuple[int, ...]],
sum_freq_partials: bool = True,
) -> List[onp.ndarray]:
"""Calculates the VJP for a given set of forward and adjoint fields."""
return utils.calculate_vjps(
self.simulation,
self.design_regions,
self.frequencies,
fwd_fields,
adj_fields,
design_variable_shapes,
sum_freq_partials=sum_freq_partials,
finite_difference_step=self.finite_difference_step,
)
def _initialize_callable(self) -> Callable[[List[jnp.ndarray]], jnp.ndarray]:
"""Initializes the callable JAX function and registers its VJP."""
@jax.custom_vjp
def simulate(design_variables: List[jnp.ndarray]) -> jnp.ndarray:
monitor_values, _ = self._run_fwd_simulation(design_variables)
return monitor_values
def _simulate_fwd(design_variables):
"""Runs forward simulation, returning monitor values and fields."""
monitor_values, self.fwd_design_region_monitors = self._run_fwd_simulation(
design_variables
)
design_variable_shapes = [x.shape for x in design_variables]
return monitor_values, (design_variable_shapes)
def _simulate_rev(res, monitor_values_grad):
"""Runs adjoint simulation, returning VJP of design wrt monitor values."""
design_variable_shapes = res
self.adj_design_region_monitors = self._run_adjoint_simulation(
monitor_values_grad
)
vjps = self._calculate_vjps(
self.fwd_design_region_monitors,
self.adj_design_region_monitors,
design_variable_shapes,
)
return ([jnp.asarray(vjp) for vjp in vjps],)
simulate.defvjp(_simulate_fwd, _simulate_rev)
return simulate
|