File: absorbed_power_density.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (113 lines) | stat: -rw-r--r-- 2,808 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import matplotlib
import numpy as np

matplotlib.use("agg")
import matplotlib.pyplot as plt
from meep.materials import SiO2

import meep as mp

resolution = 100  # pixels/um

dpml = 1.0
pml_layers = [mp.PML(thickness=dpml)]

r = 1.0  # radius of cylinder
dair = 2.0  # air padding thickness

s = 2 * (dpml + dair + r)
cell_size = mp.Vector3(s, s)

wvl = 1.0
fcen = 1 / wvl

# is_integrated=True necessary for any planewave source extending into PML
sources = [
    mp.Source(
        mp.GaussianSource(fcen, fwidth=0.1 * fcen, is_integrated=True),
        center=mp.Vector3(-0.5 * s + dpml),
        size=mp.Vector3(0, s),
        component=mp.Ez,
    )
]

symmetries = [mp.Mirror(mp.Y)]

geometry = [mp.Cylinder(material=SiO2, center=mp.Vector3(), radius=r, height=mp.inf)]

sim = mp.Simulation(
    resolution=resolution,
    cell_size=cell_size,
    boundary_layers=pml_layers,
    sources=sources,
    k_point=mp.Vector3(),
    symmetries=symmetries,
    geometry=geometry,
)

dft_fields = sim.add_dft_fields(
    [mp.Dz, mp.Ez],
    fcen,
    0,
    1,
    center=mp.Vector3(),
    size=mp.Vector3(2 * r, 2 * r),
    yee_grid=True,
)

# closed box surrounding cylinder for computing total incoming flux
flux_box = sim.add_flux(
    fcen,
    0,
    1,
    mp.FluxRegion(center=mp.Vector3(x=-r), size=mp.Vector3(0, 2 * r), weight=+1),
    mp.FluxRegion(center=mp.Vector3(x=+r), size=mp.Vector3(0, 2 * r), weight=-1),
    mp.FluxRegion(center=mp.Vector3(y=+r), size=mp.Vector3(2 * r, 0), weight=-1),
    mp.FluxRegion(center=mp.Vector3(y=-r), size=mp.Vector3(2 * r, 0), weight=+1),
)

sim.run(until_after_sources=100)

Dz = sim.get_dft_array(dft_fields, mp.Dz, 0)
Ez = sim.get_dft_array(dft_fields, mp.Ez, 0)
absorbed_power_density = 2 * np.pi * fcen * np.imag(np.conj(Ez) * Dz)

dxy = 1 / resolution**2
absorbed_power = np.sum(absorbed_power_density) * dxy
absorbed_flux = mp.get_fluxes(flux_box)[0]
err = abs(absorbed_power - absorbed_flux) / absorbed_flux
print(
    f"flux:, {absorbed_power} (dft_fields), {absorbed_flux} (dft_flux), {err} (error)"
)


plt.figure()
sim.plot2D()
plt.savefig("power_density_cell.png", dpi=150, bbox_inches="tight")

plt.figure()
x = np.linspace(-r, r, Dz.shape[0])
y = np.linspace(-r, r, Dz.shape[1])
plt.pcolormesh(
    x,
    y,
    np.transpose(absorbed_power_density),
    cmap="inferno_r",
    shading="gouraud",
    vmin=0,
    vmax=np.amax(absorbed_power_density),
)
plt.xlabel("x (μm)")
plt.xticks(np.linspace(-r, r, 5))
plt.ylabel("y (μm)")
plt.yticks(np.linspace(-r, r, 5))
plt.gca().set_aspect("equal")
plt.title(
    "absorbed power density"
    + "\n"
    + "SiO2 Labs(λ={} μm) = {:.2f} μm".format(
        wvl, wvl / np.imag(np.sqrt(SiO2.epsilon(fcen)[0][0]))
    )
)
plt.colorbar()
plt.savefig("power_density_map.png", dpi=150, bbox_inches="tight")