1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
import math
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
resolution = 60 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 3.0 # substrate thickness
dpad = 3.0 # padding between grating and PML
gp = 10.0 # grating period
gh = 0.5 # grating height
gdc = 0.5 # grating duty cycle
sx = dpml + dsub + gh + dpad + dpml
sy = gp
cell_size = mp.Vector3(sx, sy, 0)
pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]
wvl_min = 0.4 # min wavelength
wvl_max = 0.6 # max wavelength
fmin = 1 / wvl_max # min frequency
fmax = 1 / wvl_min # max frequency
fcen = 0.5 * (fmin + fmax) # center frequency
df = fmax - fmin # frequency width
src_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * dsub, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Ez,
center=src_pt,
size=mp.Vector3(0, sy, 0),
)
]
k_point = mp.Vector3(0, 0, 0)
glass = mp.Medium(index=1.5)
symmetries = [mp.Mirror(mp.Y)]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k_point,
default_material=glass,
sources=sources,
symmetries=symmetries,
)
nfreq = 21
mon_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * dpad, 0, 0)
flux_mon = sim.add_flux(
fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))
input_flux = mp.get_fluxes(flux_mon)
sim.reset_meep()
geometry = [
mp.Block(
material=glass,
size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub), 0, 0),
),
mp.Block(
material=glass,
size=mp.Vector3(gh, gdc * gp, mp.inf),
center=mp.Vector3(-0.5 * sx + dpml + dsub + 0.5 * gh, 0, 0),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
geometry=geometry,
k_point=k_point,
sources=sources,
symmetries=symmetries,
)
mode_mon = sim.add_flux(
fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))
freqs = mp.get_eigenmode_freqs(mode_mon)
nmode = 10
res = sim.get_eigenmode_coefficients(
mode_mon, range(1, nmode + 1), eig_parity=mp.ODD_Z + mp.EVEN_Y
)
coeffs = res.alpha
kdom = res.kdom
mode_wvl = []
mode_angle = []
mode_tran = []
for nm in range(nmode):
for nf in range(nfreq):
mode_wvl.append(1 / freqs[nf])
mode_angle.append(math.degrees(math.acos(kdom[nm * nfreq + nf].x / freqs[nf])))
tran = abs(coeffs[nm, nf, 0]) ** 2 / input_flux[nf]
mode_tran.append(0.5 * tran if nm != 0 else tran)
print(
"grating{}:, {:.5f}, {:.2f}, {:.8f}".format(
nm, mode_wvl[-1], mode_angle[-1], mode_tran[-1]
)
)
tran_max = round(max(mode_tran), 1)
plt.figure()
plt.pcolormesh(
np.reshape(mode_wvl, (nmode, nfreq)),
np.reshape(mode_angle, (nmode, nfreq)),
np.reshape(mode_tran, (nmode, nfreq)),
cmap="Blues",
shading="nearest",
vmin=0,
vmax=tran_max,
)
plt.axis([min(mode_wvl), max(mode_wvl), min(mode_angle), max(mode_angle)])
plt.xlabel("wavelength (μm)")
plt.ylabel("diffraction angle (degrees)")
plt.xticks(list(np.arange(0.4, 0.7, 0.1)))
plt.yticks(list(range(0, 35, 5)))
plt.title("transmittance of diffraction orders")
cbar = plt.colorbar()
cbar.set_ticks(list(np.arange(0, tran_max + 0.1, 0.1)))
cbar.set_ticklabels([f"{t:.1f}" for t in np.arange(0, tran_max + 0.1, 0.1)])
plt.show()
|