1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
import argparse
import matplotlib.pyplot as plt
import numpy as np
import numpy.matlib
import meep as mp
resolution = 60 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 3.0 # substrate thickness
dpad = 3.0 # padding between grating and PML
wvl_min = 0.4 # min wavelength
wvl_max = 0.6 # max wavelength
fmin = 1 / wvl_max # min frequency
fmax = 1 / wvl_min # max frequency
fcen = 0.5 * (fmin + fmax) # center frequency
df = fmax - fmin # frequency width
nfreq = 21 # number of frequency bins
k_point = mp.Vector3(0, 0, 0)
glass = mp.Medium(index=1.5)
def grating(gp, gh, gdc, oddz):
sx = dpml + dsub + gh + dpad + dpml
sy = gp
cell_size = mp.Vector3(sx, sy, 0)
pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]
src_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * dsub, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Ez if oddz else mp.Hz,
center=src_pt,
size=mp.Vector3(0, sy, 0),
)
]
symmetries = [mp.Mirror(mp.Y, phase=+1 if oddz else -1)]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k_point,
default_material=glass,
sources=sources,
symmetries=symmetries,
)
mon_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * dpad, 0, 0)
flux_mon = sim.add_flux(
fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=100)
input_flux = mp.get_fluxes(flux_mon)
sim.reset_meep()
geometry = [
mp.Block(
material=glass,
size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub), 0, 0),
),
mp.Block(
material=glass,
size=mp.Vector3(gh, gdc * gp, mp.inf),
center=mp.Vector3(-0.5 * sx + dpml + dsub + 0.5 * gh, 0, 0),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
geometry=geometry,
k_point=k_point,
sources=sources,
symmetries=symmetries,
)
mode_mon = sim.add_flux(
fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=300)
freqs = mp.get_eigenmode_freqs(mode_mon)
res = sim.get_eigenmode_coefficients(
mode_mon, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y if oddz else mp.EVEN_Z + mp.ODD_Y
)
coeffs = res.alpha
mode_wvl = [1 / freqs[nf] for nf in range(nfreq)]
mode_tran = [abs(coeffs[0, nf, 0]) ** 2 / input_flux[nf] for nf in range(nfreq)]
mode_phase = [np.angle(coeffs[0, nf, 0]) for nf in range(nfreq)]
return mode_wvl, mode_tran, mode_phase
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-gp", type=float, default=0.35, help="grating periodicity (default: 0.35 μm)"
)
parser.add_argument(
"-gh", type=float, default=0.6, help="grating height (default: 0.6 μm)"
)
parser.add_argument(
"-oddz", action="store_true", default=False, help="oddz? (default: False)"
)
args = parser.parse_args()
gdc = np.arange(0.1, 1.0, 0.1)
mode_tran = np.empty((gdc.size, nfreq))
mode_phase = np.empty((gdc.size, nfreq))
for n in range(gdc.size):
mode_wvl, mode_tran[n, :], mode_phase[n, :] = grating(
args.gp, args.gh, gdc[n], args.oddz
)
plt.figure(dpi=150)
plt.subplot(1, 2, 1)
plt.pcolormesh(
mode_wvl,
gdc,
mode_tran,
cmap="hot_r",
shading="gouraud",
vmin=0,
vmax=mode_tran.max(),
)
plt.axis([wvl_min, wvl_max, gdc[0], gdc[-1]])
plt.xlabel("wavelength (μm)")
plt.xticks(list(np.arange(wvl_min, wvl_max + 0.1, 0.1)))
plt.ylabel("grating duty cycle")
plt.yticks(list(np.arange(gdc[0], gdc[-1] + 0.1, 0.1)))
plt.title("transmittance")
cbar = plt.colorbar()
cbar.set_ticks(list(np.arange(0, 1.2, 0.2)))
cbar.set_ticklabels([f"{t:.1f}" for t in np.arange(0, 1.2, 0.2)])
plt.subplot(1, 2, 2)
plt.pcolormesh(
mode_wvl,
gdc,
mode_phase,
cmap="RdBu",
shading="gouraud",
vmin=mode_phase.min(),
vmax=mode_phase.max(),
)
plt.axis([wvl_min, wvl_max, gdc[0], gdc[-1]])
plt.xlabel("wavelength (μm)")
plt.xticks(list(np.arange(wvl_min, wvl_max + 0.1, 0.1)))
plt.ylabel("grating duty cycle")
plt.yticks(list(np.arange(gdc[0], gdc[-1] + 0.1, 0.1)))
plt.title("phase (radians)")
cbar = plt.colorbar()
cbar.set_ticks(list(range(-3, 4)))
cbar.set_ticklabels([f"{t:.1f}" for t in range(-3, 4)])
plt.tight_layout()
plt.show()
|