File: binary_grating_phasemap.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (174 lines) | stat: -rw-r--r-- 4,861 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse

import matplotlib.pyplot as plt
import numpy as np
import numpy.matlib

import meep as mp

resolution = 60  # pixels/μm

dpml = 1.0  # PML thickness
dsub = 3.0  # substrate thickness
dpad = 3.0  # padding between grating and PML

wvl_min = 0.4  # min wavelength
wvl_max = 0.6  # max wavelength
fmin = 1 / wvl_max  # min frequency
fmax = 1 / wvl_min  # max frequency
fcen = 0.5 * (fmin + fmax)  # center frequency
df = fmax - fmin  # frequency width
nfreq = 21  # number of frequency bins

k_point = mp.Vector3(0, 0, 0)

glass = mp.Medium(index=1.5)


def grating(gp, gh, gdc, oddz):
    sx = dpml + dsub + gh + dpad + dpml
    sy = gp

    cell_size = mp.Vector3(sx, sy, 0)
    pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]

    src_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * dsub, 0, 0)
    sources = [
        mp.Source(
            mp.GaussianSource(fcen, fwidth=df),
            component=mp.Ez if oddz else mp.Hz,
            center=src_pt,
            size=mp.Vector3(0, sy, 0),
        )
    ]

    symmetries = [mp.Mirror(mp.Y, phase=+1 if oddz else -1)]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=pml_layers,
        k_point=k_point,
        default_material=glass,
        sources=sources,
        symmetries=symmetries,
    )

    mon_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * dpad, 0, 0)
    flux_mon = sim.add_flux(
        fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
    )

    sim.run(until_after_sources=100)

    input_flux = mp.get_fluxes(flux_mon)

    sim.reset_meep()

    geometry = [
        mp.Block(
            material=glass,
            size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
            center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub), 0, 0),
        ),
        mp.Block(
            material=glass,
            size=mp.Vector3(gh, gdc * gp, mp.inf),
            center=mp.Vector3(-0.5 * sx + dpml + dsub + 0.5 * gh, 0, 0),
        ),
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=pml_layers,
        geometry=geometry,
        k_point=k_point,
        sources=sources,
        symmetries=symmetries,
    )

    mode_mon = sim.add_flux(
        fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy, 0))
    )

    sim.run(until_after_sources=300)

    freqs = mp.get_eigenmode_freqs(mode_mon)
    res = sim.get_eigenmode_coefficients(
        mode_mon, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y if oddz else mp.EVEN_Z + mp.ODD_Y
    )
    coeffs = res.alpha

    mode_wvl = [1 / freqs[nf] for nf in range(nfreq)]
    mode_tran = [abs(coeffs[0, nf, 0]) ** 2 / input_flux[nf] for nf in range(nfreq)]
    mode_phase = [np.angle(coeffs[0, nf, 0]) for nf in range(nfreq)]

    return mode_wvl, mode_tran, mode_phase


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-gp", type=float, default=0.35, help="grating periodicity (default: 0.35 μm)"
    )
    parser.add_argument(
        "-gh", type=float, default=0.6, help="grating height (default: 0.6 μm)"
    )
    parser.add_argument(
        "-oddz", action="store_true", default=False, help="oddz? (default: False)"
    )
    args = parser.parse_args()

    gdc = np.arange(0.1, 1.0, 0.1)
    mode_tran = np.empty((gdc.size, nfreq))
    mode_phase = np.empty((gdc.size, nfreq))
    for n in range(gdc.size):
        mode_wvl, mode_tran[n, :], mode_phase[n, :] = grating(
            args.gp, args.gh, gdc[n], args.oddz
        )

    plt.figure(dpi=150)

    plt.subplot(1, 2, 1)
    plt.pcolormesh(
        mode_wvl,
        gdc,
        mode_tran,
        cmap="hot_r",
        shading="gouraud",
        vmin=0,
        vmax=mode_tran.max(),
    )
    plt.axis([wvl_min, wvl_max, gdc[0], gdc[-1]])
    plt.xlabel("wavelength (μm)")
    plt.xticks(list(np.arange(wvl_min, wvl_max + 0.1, 0.1)))
    plt.ylabel("grating duty cycle")
    plt.yticks(list(np.arange(gdc[0], gdc[-1] + 0.1, 0.1)))
    plt.title("transmittance")
    cbar = plt.colorbar()
    cbar.set_ticks(list(np.arange(0, 1.2, 0.2)))
    cbar.set_ticklabels([f"{t:.1f}" for t in np.arange(0, 1.2, 0.2)])

    plt.subplot(1, 2, 2)
    plt.pcolormesh(
        mode_wvl,
        gdc,
        mode_phase,
        cmap="RdBu",
        shading="gouraud",
        vmin=mode_phase.min(),
        vmax=mode_phase.max(),
    )
    plt.axis([wvl_min, wvl_max, gdc[0], gdc[-1]])
    plt.xlabel("wavelength (μm)")
    plt.xticks(list(np.arange(wvl_min, wvl_max + 0.1, 0.1)))
    plt.ylabel("grating duty cycle")
    plt.yticks(list(np.arange(gdc[0], gdc[-1] + 0.1, 0.1)))
    plt.title("phase (radians)")
    cbar = plt.colorbar()
    cbar.set_ticks(list(range(-3, 4)))
    cbar.set_ticklabels([f"{t:.1f}" for t in range(-3, 4)])

    plt.tight_layout()
    plt.show()