File: cylinder_cross_section.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (139 lines) | stat: -rw-r--r-- 3,438 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import matplotlib.pyplot as plt
import numpy as np

import meep as mp

r = 0.7  # radius of cylinder
h = 2.3  # height of cylinder

wvl_min = 2 * np.pi * r / 10
wvl_max = 2 * np.pi * r / 2

frq_min = 1 / wvl_max
frq_max = 1 / wvl_min
frq_cen = 0.5 * (frq_min + frq_max)
dfrq = frq_max - frq_min
nfrq = 100

## at least 8 pixels per smallest wavelength, i.e. np.floor(8/wvl_min)
resolution = 25

dpml = 0.5 * wvl_max
dair = 1.0 * wvl_max

pml_layers = [mp.PML(thickness=dpml)]

sr = r + dair + dpml
sz = dpml + dair + h + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)

sources = [
    mp.Source(
        mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
        component=mp.Er,
        center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
        size=mp.Vector3(sr),
    ),
    mp.Source(
        mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
        component=mp.Ep,
        center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
        size=mp.Vector3(sr),
        amplitude=-1j,
    ),
]

sim = mp.Simulation(
    cell_size=cell_size,
    boundary_layers=pml_layers,
    resolution=resolution,
    sources=sources,
    dimensions=mp.CYLINDRICAL,
    m=-1,
)

box_z1 = sim.add_flux(
    frq_cen,
    dfrq,
    nfrq,
    mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)),
)
box_z2 = sim.add_flux(
    frq_cen,
    dfrq,
    nfrq,
    mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)),
)
box_r = sim.add_flux(
    frq_cen, dfrq, nfrq, mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h))
)

sim.run(until_after_sources=10)

freqs = mp.get_flux_freqs(box_z1)
box_z1_data = sim.get_flux_data(box_z1)
box_z2_data = sim.get_flux_data(box_z2)
box_r_data = sim.get_flux_data(box_r)

box_z1_flux0 = mp.get_fluxes(box_z1)

sim.reset_meep()

n_cyl = 2.0
geometry = [
    mp.Block(
        material=mp.Medium(index=n_cyl),
        center=mp.Vector3(0.5 * r),
        size=mp.Vector3(r, 0, h),
    )
]

sim = mp.Simulation(
    cell_size=cell_size,
    geometry=geometry,
    boundary_layers=pml_layers,
    resolution=resolution,
    sources=sources,
    dimensions=mp.CYLINDRICAL,
    m=-1,
)

box_z1 = sim.add_flux(
    frq_cen,
    dfrq,
    nfrq,
    mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)),
)
box_z2 = sim.add_flux(
    frq_cen,
    dfrq,
    nfrq,
    mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)),
)
box_r = sim.add_flux(
    frq_cen, dfrq, nfrq, mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h))
)

sim.load_minus_flux_data(box_z1, box_z1_data)
sim.load_minus_flux_data(box_z2, box_z2_data)
sim.load_minus_flux_data(box_r, box_r_data)

sim.run(until_after_sources=100)

box_z1_flux = mp.get_fluxes(box_z1)
box_z2_flux = mp.get_fluxes(box_z2)
box_r_flux = mp.get_fluxes(box_r)

scatt_flux = np.asarray(box_z1_flux) - np.asarray(box_z2_flux) - np.asarray(box_r_flux)
intensity = np.asarray(box_z1_flux0) / (np.pi * r**2)
scatt_cross_section = np.divide(-scatt_flux, intensity)

if mp.am_master():
    plt.figure(dpi=150)
    plt.loglog(2 * np.pi * r * np.asarray(freqs), scatt_cross_section, "bo-")
    plt.grid(True, which="both", ls="-")
    plt.xlabel("(cylinder circumference)/wavelength, 2πr/λ")
    plt.ylabel("scattering cross section, σ")
    plt.title("Scattering Cross Section of a Lossless Dielectric Cylinder")
    plt.tight_layout()
    plt.savefig("cylinder_cross_section.png")