1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
r = 0.7 # radius of cylinder
h = 2.3 # height of cylinder
wvl_min = 2 * np.pi * r / 10
wvl_max = 2 * np.pi * r / 2
frq_min = 1 / wvl_max
frq_max = 1 / wvl_min
frq_cen = 0.5 * (frq_min + frq_max)
dfrq = frq_max - frq_min
nfrq = 100
## at least 8 pixels per smallest wavelength, i.e. np.floor(8/wvl_min)
resolution = 25
dpml = 0.5 * wvl_max
dair = 1.0 * wvl_max
pml_layers = [mp.PML(thickness=dpml)]
sr = r + dair + dpml
sz = dpml + dair + h + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)
sources = [
mp.Source(
mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
component=mp.Er,
center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
size=mp.Vector3(sr),
),
mp.Source(
mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
component=mp.Ep,
center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
size=mp.Vector3(sr),
amplitude=-1j,
),
]
sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
dimensions=mp.CYLINDRICAL,
m=-1,
)
box_z1 = sim.add_flux(
frq_cen,
dfrq,
nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)),
)
box_z2 = sim.add_flux(
frq_cen,
dfrq,
nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)),
)
box_r = sim.add_flux(
frq_cen, dfrq, nfrq, mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h))
)
sim.run(until_after_sources=10)
freqs = mp.get_flux_freqs(box_z1)
box_z1_data = sim.get_flux_data(box_z1)
box_z2_data = sim.get_flux_data(box_z2)
box_r_data = sim.get_flux_data(box_r)
box_z1_flux0 = mp.get_fluxes(box_z1)
sim.reset_meep()
n_cyl = 2.0
geometry = [
mp.Block(
material=mp.Medium(index=n_cyl),
center=mp.Vector3(0.5 * r),
size=mp.Vector3(r, 0, h),
)
]
sim = mp.Simulation(
cell_size=cell_size,
geometry=geometry,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
dimensions=mp.CYLINDRICAL,
m=-1,
)
box_z1 = sim.add_flux(
frq_cen,
dfrq,
nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)),
)
box_z2 = sim.add_flux(
frq_cen,
dfrq,
nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)),
)
box_r = sim.add_flux(
frq_cen, dfrq, nfrq, mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h))
)
sim.load_minus_flux_data(box_z1, box_z1_data)
sim.load_minus_flux_data(box_z2, box_z2_data)
sim.load_minus_flux_data(box_r, box_r_data)
sim.run(until_after_sources=100)
box_z1_flux = mp.get_fluxes(box_z1)
box_z2_flux = mp.get_fluxes(box_z2)
box_r_flux = mp.get_fluxes(box_r)
scatt_flux = np.asarray(box_z1_flux) - np.asarray(box_z2_flux) - np.asarray(box_r_flux)
intensity = np.asarray(box_z1_flux0) / (np.pi * r**2)
scatt_cross_section = np.divide(-scatt_flux, intensity)
if mp.am_master():
plt.figure(dpi=150)
plt.loglog(2 * np.pi * r * np.asarray(freqs), scatt_cross_section, "bo-")
plt.grid(True, which="both", ls="-")
plt.xlabel("(cylinder circumference)/wavelength, 2πr/λ")
plt.ylabel("scattering cross section, σ")
plt.title("Scattering Cross Section of a Lossless Dielectric Cylinder")
plt.tight_layout()
plt.savefig("cylinder_cross_section.png")
|