1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
import matplotlib.pyplot as plt
import numpy as np
import PyMieScatt as ps
import meep as mp
r = 1.0 # radius of sphere
frq_cen = 1.0
resolution = 20 # pixels/um
dpml = 0.5
dair = 1.5 # at least 0.5/frq_cen padding between source and near-field monitor
pml_layers = [mp.PML(thickness=dpml)]
s = 2 * (dpml + dair + r)
cell_size = mp.Vector3(s, s, s)
# circularly-polarized source with propagation axis along x
# is_integrated=True necessary for any planewave source extending into PML
sources = [
mp.Source(
mp.GaussianSource(frq_cen, fwidth=0.2 * frq_cen, is_integrated=True),
center=mp.Vector3(-0.5 * s + dpml),
size=mp.Vector3(0, s, s),
component=mp.Ez,
),
mp.Source(
mp.GaussianSource(frq_cen, fwidth=0.2 * frq_cen, is_integrated=True),
center=mp.Vector3(-0.5 * s + dpml),
size=mp.Vector3(0, s, s),
component=mp.Ey,
amplitude=1j,
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
sources=sources,
k_point=mp.Vector3(),
)
box_flux = sim.add_flux(
frq_cen,
0,
1,
mp.FluxRegion(center=mp.Vector3(x=-2 * r), size=mp.Vector3(0, 4 * r, 4 * r)),
)
nearfield_box = sim.add_near2far(
frq_cen,
0,
1,
mp.Near2FarRegion(
center=mp.Vector3(x=-2 * r), size=mp.Vector3(0, 4 * r, 4 * r), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(x=+2 * r), size=mp.Vector3(0, 4 * r, 4 * r), weight=-1
),
mp.Near2FarRegion(
center=mp.Vector3(y=-2 * r), size=mp.Vector3(4 * r, 0, 4 * r), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(y=+2 * r), size=mp.Vector3(4 * r, 0, 4 * r), weight=-1
),
mp.Near2FarRegion(
center=mp.Vector3(z=-2 * r), size=mp.Vector3(4 * r, 4 * r, 0), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(z=+2 * r), size=mp.Vector3(4 * r, 4 * r, 0), weight=-1
),
)
sim.run(until_after_sources=10)
input_flux = mp.get_fluxes(box_flux)[0]
nearfield_box_data = sim.get_near2far_data(nearfield_box)
sim.reset_meep()
n_sphere = 2.0
geometry = [
mp.Sphere(material=mp.Medium(index=n_sphere), center=mp.Vector3(), radius=r)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
sources=sources,
k_point=mp.Vector3(),
geometry=geometry,
)
nearfield_box = sim.add_near2far(
frq_cen,
0,
1,
mp.Near2FarRegion(
center=mp.Vector3(x=-2 * r), size=mp.Vector3(0, 4 * r, 4 * r), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(x=+2 * r), size=mp.Vector3(0, 4 * r, 4 * r), weight=-1
),
mp.Near2FarRegion(
center=mp.Vector3(y=-2 * r), size=mp.Vector3(4 * r, 0, 4 * r), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(y=+2 * r), size=mp.Vector3(4 * r, 0, 4 * r), weight=-1
),
mp.Near2FarRegion(
center=mp.Vector3(z=-2 * r), size=mp.Vector3(4 * r, 4 * r, 0), weight=+1
),
mp.Near2FarRegion(
center=mp.Vector3(z=+2 * r), size=mp.Vector3(4 * r, 4 * r, 0), weight=-1
),
)
sim.load_minus_near2far_data(nearfield_box, nearfield_box_data)
sim.run(until_after_sources=100)
npts = 100 # number of points in [0,pi) range of polar angles to sample far fields along semi-circle
angles = np.pi / npts * np.arange(npts)
ff_r = 10000 * r # radius of far-field semi-circle
E = np.zeros((npts, 3), dtype=np.complex128)
H = np.zeros((npts, 3), dtype=np.complex128)
for n in range(npts):
ff = sim.get_farfield(
nearfield_box, ff_r * mp.Vector3(np.cos(angles[n]), 0, np.sin(angles[n]))
)
E[n, :] = [np.conj(ff[j]) for j in range(3)]
H[n, :] = [ff[j + 3] for j in range(3)]
Px = np.real(np.multiply(E[:, 1], H[:, 2]) - np.multiply(E[:, 2], H[:, 1]))
Py = np.real(np.multiply(E[:, 2], H[:, 0]) - np.multiply(E[:, 0], H[:, 2]))
Pz = np.real(np.multiply(E[:, 0], H[:, 1]) - np.multiply(E[:, 1], H[:, 0]))
Pr = np.sqrt(np.square(Px) + np.square(Py) + np.square(Pz))
intensity = input_flux / (4 * r) ** 2
diff_cross_section = ff_r**2 * Pr / intensity
scatt_cross_section_meep = (
2 * np.pi * np.sum(np.multiply(diff_cross_section, np.sin(angles))) * np.pi / npts
)
scatt_cross_section_theory = (
ps.MieQ(n_sphere, 1000 / frq_cen, 2 * r * 1000, asDict=True, asCrossSection=True)[
"Csca"
]
* 1e-6
) # units of um^2
print(
"scatt:, {:.16f} (meep), {:.16f} (theory)".format(
scatt_cross_section_meep, scatt_cross_section_theory
)
)
|