1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
### compute the transmitted diffraction orders of a binary grating using mode decomposition
### based on two different methods: (1) MPB eigensolver and (2) DiffractedPlanewave object.
### Also, verify that the total power in all the orders is equivalent to the Poynting flux.
### for normal incidence, compute only positive diff. orders (total transmittance <= 0.50)
### for oblique incidence, compute ALL diff. orders (total transmittance <= 1.00)
import cmath
import math
import numpy as np
import meep as mp
def binary_grating_diffraction(gp, gh, gdc, theta):
resolution = 50 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 3.0 # substrate thickness
dpad = 3.0 # length of padding between grating and PML
sx = dpml + dsub + gh + dpad + dpml
sy = gp
cell_size = mp.Vector3(sx, sy, 0)
pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]
wvl = 0.5 # center wavelength
fcen = 1 / wvl # center frequency
df = 0.05 * fcen # frequency width
ng = 1.5
glass = mp.Medium(index=ng)
# rotation angle of incident planewave; counter clockwise (CCW) about Z axis, 0 degrees along +X axis
theta_in = math.radians(theta)
eig_parity = mp.EVEN_Z
# k (in source medium) with correct length (plane of incidence: XY)
k = mp.Vector3(fcen * ng).rotate(mp.Vector3(z=1), theta_in)
symmetries = []
if theta_in == 0:
k = mp.Vector3()
eig_parity += mp.ODD_Y
symmetries = [mp.Mirror(direction=mp.Y, phase=-1)]
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(-0.5 * sx + dpml, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Hz,
center=src_pt,
size=mp.Vector3(0, sy, 0),
amp_func=pw_amp(k, src_pt),
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k,
default_material=glass,
sources=sources,
symmetries=symmetries,
)
tran_pt = mp.Vector3(0.5 * sx - dpml, 0, 0)
tran_mon = sim.add_flux(
fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=50)
input_flux = mp.get_fluxes(tran_mon)
sim.reset_meep()
geometry = [
mp.Block(
material=glass,
size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub), 0, 0),
),
mp.Block(
material=glass,
size=mp.Vector3(gh, gdc * gp, mp.inf),
center=mp.Vector3(-0.5 * sx + dpml + dsub + 0.5 * gh, 0, 0),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
geometry=geometry,
k_point=k,
sources=sources,
symmetries=symmetries,
)
tran_mon = sim.add_mode_monitor(
fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=100)
# number of (non-evanescent) transmitted orders
nm_t = np.floor((fcen - k.y) * gp) - np.ceil((-fcen - k.y) * gp)
if theta_in == 0:
nm_t = nm_t / 2
nm_t = int(nm_t) + 1
bands = range(1, nm_t + 1)
if theta_in == 0:
orders = range(0, nm_t)
else:
orders = range(
int(np.ceil((-fcen - k.y) * gp)), int(np.floor((fcen - k.y) * gp)) + 1
)
eig_sum = 0
dp_sum = 0
for band, order in zip(bands, orders):
res = sim.get_eigenmode_coefficients(tran_mon, [band], eig_parity=eig_parity)
if res is not None:
tran_eig = abs(res.alpha[0, 0, 0]) ** 2 / input_flux[0]
if theta_in == 0:
tran_eig = 0.5 * tran_eig
else:
tran_eig = 0
eig_sum += tran_eig
res = sim.get_eigenmode_coefficients(
tran_mon, mp.DiffractedPlanewave((0, order, 0), mp.Vector3(0, 1, 0), 0, 1)
)
if res is not None:
tran_dp = abs(res.alpha[0, 0, 0]) ** 2 / input_flux[0]
if (theta_in == 0) and (order == 0):
tran_dp = 0.5 * tran_dp
else:
tran_dp = 0
dp_sum += tran_dp
if theta_in == 0:
err = abs(tran_eig - tran_dp) / tran_eig
print(
"tran:, {:2d}, {:.8f}, {:2d}, {:.8f}, {:.8f}".format(
band, tran_eig, order, tran_dp, err
)
)
else:
print(
"tran:, {:2d}, {:.8f}, {:2d}, {:.8f}".format(
band, tran_eig, order, tran_dp
)
)
flux = mp.get_fluxes(tran_mon)
t_flux = flux[0] / input_flux[0]
if theta_in == 0:
t_flux = 0.5 * t_flux
err = abs(dp_sum - t_flux) / t_flux
print(f"flux:, {eig_sum:.8f}, {dp_sum:.8f}, {t_flux:.8f}, {err:.8f}")
if __name__ == "__main__":
binary_grating_diffraction(2.6, 0.4, 0.3, 0)
binary_grating_diffraction(3.7, 0.6, 0.4, 13.5)
|