File: diffracted_planewave.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (180 lines) | stat: -rw-r--r-- 5,204 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
### compute the transmitted diffraction orders of a binary grating using mode decomposition
### based on two different methods: (1) MPB eigensolver and (2) DiffractedPlanewave object.
### Also, verify that the total power in all the orders is equivalent to the Poynting flux.
### for normal incidence, compute only positive diff. orders (total transmittance <= 0.50)
### for oblique incidence, compute ALL diff. orders (total transmittance <= 1.00)
import cmath
import math

import numpy as np

import meep as mp


def binary_grating_diffraction(gp, gh, gdc, theta):

    resolution = 50  # pixels/μm

    dpml = 1.0  # PML thickness
    dsub = 3.0  # substrate thickness
    dpad = 3.0  # length of padding between grating and PML

    sx = dpml + dsub + gh + dpad + dpml
    sy = gp

    cell_size = mp.Vector3(sx, sy, 0)
    pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]

    wvl = 0.5  # center wavelength
    fcen = 1 / wvl  # center frequency
    df = 0.05 * fcen  # frequency width

    ng = 1.5
    glass = mp.Medium(index=ng)

    # rotation angle of incident planewave; counter clockwise (CCW) about Z axis, 0 degrees along +X axis
    theta_in = math.radians(theta)

    eig_parity = mp.EVEN_Z

    # k (in source medium) with correct length (plane of incidence: XY)
    k = mp.Vector3(fcen * ng).rotate(mp.Vector3(z=1), theta_in)

    symmetries = []
    if theta_in == 0:
        k = mp.Vector3()
        eig_parity += mp.ODD_Y
        symmetries = [mp.Mirror(direction=mp.Y, phase=-1)]

    def pw_amp(k, x0):
        def _pw_amp(x):
            return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))

        return _pw_amp

    src_pt = mp.Vector3(-0.5 * sx + dpml, 0, 0)
    sources = [
        mp.Source(
            mp.GaussianSource(fcen, fwidth=df),
            component=mp.Hz,
            center=src_pt,
            size=mp.Vector3(0, sy, 0),
            amp_func=pw_amp(k, src_pt),
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=pml_layers,
        k_point=k,
        default_material=glass,
        sources=sources,
        symmetries=symmetries,
    )

    tran_pt = mp.Vector3(0.5 * sx - dpml, 0, 0)
    tran_mon = sim.add_flux(
        fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
    )

    sim.run(until_after_sources=50)

    input_flux = mp.get_fluxes(tran_mon)

    sim.reset_meep()

    geometry = [
        mp.Block(
            material=glass,
            size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
            center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub), 0, 0),
        ),
        mp.Block(
            material=glass,
            size=mp.Vector3(gh, gdc * gp, mp.inf),
            center=mp.Vector3(-0.5 * sx + dpml + dsub + 0.5 * gh, 0, 0),
        ),
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=pml_layers,
        geometry=geometry,
        k_point=k,
        sources=sources,
        symmetries=symmetries,
    )

    tran_mon = sim.add_mode_monitor(
        fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
    )

    sim.run(until_after_sources=100)

    # number of (non-evanescent) transmitted orders
    nm_t = np.floor((fcen - k.y) * gp) - np.ceil((-fcen - k.y) * gp)
    if theta_in == 0:
        nm_t = nm_t / 2
    nm_t = int(nm_t) + 1

    bands = range(1, nm_t + 1)

    if theta_in == 0:
        orders = range(0, nm_t)
    else:
        orders = range(
            int(np.ceil((-fcen - k.y) * gp)), int(np.floor((fcen - k.y) * gp)) + 1
        )

    eig_sum = 0
    dp_sum = 0

    for band, order in zip(bands, orders):
        res = sim.get_eigenmode_coefficients(tran_mon, [band], eig_parity=eig_parity)
        if res is not None:
            tran_eig = abs(res.alpha[0, 0, 0]) ** 2 / input_flux[0]
            if theta_in == 0:
                tran_eig = 0.5 * tran_eig
        else:
            tran_eig = 0
        eig_sum += tran_eig

        res = sim.get_eigenmode_coefficients(
            tran_mon, mp.DiffractedPlanewave((0, order, 0), mp.Vector3(0, 1, 0), 0, 1)
        )
        if res is not None:
            tran_dp = abs(res.alpha[0, 0, 0]) ** 2 / input_flux[0]
            if (theta_in == 0) and (order == 0):
                tran_dp = 0.5 * tran_dp
        else:
            tran_dp = 0
        dp_sum += tran_dp

        if theta_in == 0:
            err = abs(tran_eig - tran_dp) / tran_eig
            print(
                "tran:, {:2d}, {:.8f}, {:2d}, {:.8f}, {:.8f}".format(
                    band, tran_eig, order, tran_dp, err
                )
            )
        else:
            print(
                "tran:, {:2d}, {:.8f}, {:2d}, {:.8f}".format(
                    band, tran_eig, order, tran_dp
                )
            )

    flux = mp.get_fluxes(tran_mon)
    t_flux = flux[0] / input_flux[0]
    if theta_in == 0:
        t_flux = 0.5 * t_flux

    err = abs(dp_sum - t_flux) / t_flux
    print(f"flux:, {eig_sum:.8f}, {dp_sum:.8f}, {t_flux:.8f}, {err:.8f}")


if __name__ == "__main__":
    binary_grating_diffraction(2.6, 0.4, 0.3, 0)
    binary_grating_diffraction(3.7, 0.6, 0.4, 13.5)