File: extraction_eff_ldos.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (206 lines) | stat: -rw-r--r-- 6,041 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Verifies that the extraction efficiency of a point dipole in a
# dielectric layer above a lossless ground plane computed in
# cylindrical and 3D Cartesian coordinates agree.

import numpy as np
import meep as mp
import matplotlib

matplotlib.use("agg")
import matplotlib.pyplot as plt


resolution = 80  # pixels/μm
dpml = 0.5  # thickness of PML
dair = 1.0  # thickness of air padding
L = 6.0  # length of non-PML region
n = 2.4  # refractive index of surrounding medium
wvl = 1.0  # wavelength (in vacuum)

fcen = 1 / wvl  # center frequency of source/monitor

# source properties (cylindrical)
df = 0.05 * fcen
cutoff = 10.0
src = mp.GaussianSource(fcen, fwidth=df, cutoff=cutoff)

# termination criteria
tol = 1e-8


def extraction_eff_cyl(dmat: float, h: float) -> float:
    """Computes the extraction efficiency of a point dipole embedded
    within a dielectric layer above a lossless ground plane in
    cylindrical coordinates.

    Args:
      dmat: thickness of dielectric layer.
      h: height of dipole above ground plane as fraction of dmat.
    """
    sr = L + dpml
    sz = dmat + dair + dpml
    cell_size = mp.Vector3(sr, 0, sz)

    boundary_layers = [
        mp.PML(dpml, direction=mp.R),
        mp.PML(dpml, direction=mp.Z, side=mp.High),
    ]

    src_cmpt = mp.Er
    src_pt = mp.Vector3(0, 0, -0.5 * sz + h * dmat)
    sources = [mp.Source(src=src, component=src_cmpt, center=src_pt)]

    geometry = [
        mp.Block(
            material=mp.Medium(index=n),
            center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
            size=mp.Vector3(mp.inf, mp.inf, dmat),
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        dimensions=mp.CYLINDRICAL,
        m=-1,
        boundary_layers=boundary_layers,
        sources=sources,
        geometry=geometry,
    )

    flux_air = sim.add_flux(
        fcen,
        0,
        1,
        mp.FluxRegion(
            center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml),
            size=mp.Vector3(L, 0, 0),
        ),
        mp.FluxRegion(
            center=mp.Vector3(L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, 0, dair),
        ),
    )

    sim.run(
        mp.dft_ldos(fcen, 0, 1),
        until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
    )

    out_flux = mp.get_fluxes(flux_air)[0]
    dV = np.pi / (resolution**3)
    total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
    ext_eff = out_flux / total_flux
    print(f"extraction efficiency (cyl):, " f"{dmat:.4f}, {h:.4f}, {ext_eff:.6f}")

    return ext_eff


def extraction_eff_3D(dmat: float, h: float) -> float:
    """Computes the extraction efficiency of a point dipole embedded
    within a dielectric layer above a lossless ground plane in
    3D Cartesian coordinates.

    Args:
      dmat: thickness of dielectric layer.
      h: height of dipole above ground plane as fraction of dmat.
    """
    sxy = L + 2 * dpml
    sz = dmat + dair + dpml
    cell_size = mp.Vector3(sxy, sxy, sz)

    symmetries = [mp.Mirror(direction=mp.X, phase=-1), mp.Mirror(direction=mp.Y)]

    boundary_layers = [
        mp.PML(dpml, direction=mp.X),
        mp.PML(dpml, direction=mp.Y),
        mp.PML(dpml, direction=mp.Z, side=mp.High),
    ]

    src_cmpt = mp.Ex
    src_pt = mp.Vector3(0, 0, -0.5 * sz + h * dmat)
    sources = [
        mp.Source(
            src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
            component=src_cmpt,
            center=src_pt,
        )
    ]

    geometry = [
        mp.Block(
            material=mp.Medium(index=n),
            center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
            size=mp.Vector3(mp.inf, mp.inf, dmat),
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        sources=sources,
        geometry=geometry,
        symmetries=symmetries,
    )

    flux_air = sim.add_flux(
        fcen,
        0,
        1,
        mp.FluxRegion(
            center=mp.Vector3(0, 0, 0.5 * sz - dpml),
            size=mp.Vector3(L, L, 0),
        ),
        mp.FluxRegion(
            center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, L, dair),
        ),
        mp.FluxRegion(
            center=mp.Vector3(-0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(0, L, dair),
            weight=-1.0,
        ),
        mp.FluxRegion(
            center=mp.Vector3(0, 0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(L, 0, dair),
        ),
        mp.FluxRegion(
            center=mp.Vector3(0, -0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
            size=mp.Vector3(L, 0, dair),
            weight=-1.0,
        ),
    )

    sim.run(
        mp.dft_ldos(fcen, 0, 1),
        until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
    )

    out_flux = mp.get_fluxes(flux_air)[0]
    dV = 1 / (resolution**3)
    total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
    ext_eff = out_flux / total_flux
    print(f"extraction efficiency (3D):, " f"{dmat:.4f}, {h:.4f}, {ext_eff:.6f}")

    return ext_eff


if __name__ == "__main__":
    layer_thickness = 0.7 * wvl / n
    dipole_height = np.linspace(0.1, 0.9, 21)

    exteff_cyl = np.zeros(len(dipole_height))
    exteff_3D = np.zeros(len(dipole_height))
    for j in range(len(dipole_height)):
        exteff_cyl[j] = extraction_eff_cyl(layer_thickness, dipole_height[j])
        exteff_3D[j] = extraction_eff_3D(layer_thickness, dipole_height[j])

    plt.plot(dipole_height, exteff_cyl, "bo-", label="cylindrical")
    plt.plot(dipole_height, exteff_3D, "ro-", label="3D Cartesian")
    plt.xlabel(f"height of dipole above ground plane " f"(fraction of layer thickness)")
    plt.ylabel("extraction efficiency")
    plt.legend()

    if mp.am_master():
        plt.savefig("extraction_eff_vs_dipole_height.png", dpi=150, bbox_inches="tight")