1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
# Verifies that the extraction efficiency of a point dipole in a
# dielectric layer above a lossless ground plane computed in
# cylindrical and 3D Cartesian coordinates agree.
import numpy as np
import meep as mp
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
resolution = 80 # pixels/μm
dpml = 0.5 # thickness of PML
dair = 1.0 # thickness of air padding
L = 6.0 # length of non-PML region
n = 2.4 # refractive index of surrounding medium
wvl = 1.0 # wavelength (in vacuum)
fcen = 1 / wvl # center frequency of source/monitor
# source properties (cylindrical)
df = 0.05 * fcen
cutoff = 10.0
src = mp.GaussianSource(fcen, fwidth=df, cutoff=cutoff)
# termination criteria
tol = 1e-8
def extraction_eff_cyl(dmat: float, h: float) -> float:
"""Computes the extraction efficiency of a point dipole embedded
within a dielectric layer above a lossless ground plane in
cylindrical coordinates.
Args:
dmat: thickness of dielectric layer.
h: height of dipole above ground plane as fraction of dmat.
"""
sr = L + dpml
sz = dmat + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)
boundary_layers = [
mp.PML(dpml, direction=mp.R),
mp.PML(dpml, direction=mp.Z, side=mp.High),
]
src_cmpt = mp.Er
src_pt = mp.Vector3(0, 0, -0.5 * sz + h * dmat)
sources = [mp.Source(src=src, component=src_cmpt, center=src_pt)]
geometry = [
mp.Block(
material=mp.Medium(index=n),
center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
size=mp.Vector3(mp.inf, mp.inf, dmat),
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
dimensions=mp.CYLINDRICAL,
m=-1,
boundary_layers=boundary_layers,
sources=sources,
geometry=geometry,
)
flux_air = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml),
size=mp.Vector3(L, 0, 0),
),
mp.FluxRegion(
center=mp.Vector3(L, 0, 0.5 * sz - dpml - 0.5 * dair),
size=mp.Vector3(0, 0, dair),
),
)
sim.run(
mp.dft_ldos(fcen, 0, 1),
until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
)
out_flux = mp.get_fluxes(flux_air)[0]
dV = np.pi / (resolution**3)
total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
ext_eff = out_flux / total_flux
print(f"extraction efficiency (cyl):, " f"{dmat:.4f}, {h:.4f}, {ext_eff:.6f}")
return ext_eff
def extraction_eff_3D(dmat: float, h: float) -> float:
"""Computes the extraction efficiency of a point dipole embedded
within a dielectric layer above a lossless ground plane in
3D Cartesian coordinates.
Args:
dmat: thickness of dielectric layer.
h: height of dipole above ground plane as fraction of dmat.
"""
sxy = L + 2 * dpml
sz = dmat + dair + dpml
cell_size = mp.Vector3(sxy, sxy, sz)
symmetries = [mp.Mirror(direction=mp.X, phase=-1), mp.Mirror(direction=mp.Y)]
boundary_layers = [
mp.PML(dpml, direction=mp.X),
mp.PML(dpml, direction=mp.Y),
mp.PML(dpml, direction=mp.Z, side=mp.High),
]
src_cmpt = mp.Ex
src_pt = mp.Vector3(0, 0, -0.5 * sz + h * dmat)
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
component=src_cmpt,
center=src_pt,
)
]
geometry = [
mp.Block(
material=mp.Medium(index=n),
center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * dmat),
size=mp.Vector3(mp.inf, mp.inf, dmat),
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
sources=sources,
geometry=geometry,
symmetries=symmetries,
)
flux_air = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(0, 0, 0.5 * sz - dpml),
size=mp.Vector3(L, L, 0),
),
mp.FluxRegion(
center=mp.Vector3(0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
size=mp.Vector3(0, L, dair),
),
mp.FluxRegion(
center=mp.Vector3(-0.5 * L, 0, 0.5 * sz - dpml - 0.5 * dair),
size=mp.Vector3(0, L, dair),
weight=-1.0,
),
mp.FluxRegion(
center=mp.Vector3(0, 0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
size=mp.Vector3(L, 0, dair),
),
mp.FluxRegion(
center=mp.Vector3(0, -0.5 * L, 0.5 * sz - dpml - 0.5 * dair),
size=mp.Vector3(L, 0, dair),
weight=-1.0,
),
)
sim.run(
mp.dft_ldos(fcen, 0, 1),
until_after_sources=mp.stop_when_fields_decayed(20, src_cmpt, src_pt, tol),
)
out_flux = mp.get_fluxes(flux_air)[0]
dV = 1 / (resolution**3)
total_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * dV
ext_eff = out_flux / total_flux
print(f"extraction efficiency (3D):, " f"{dmat:.4f}, {h:.4f}, {ext_eff:.6f}")
return ext_eff
if __name__ == "__main__":
layer_thickness = 0.7 * wvl / n
dipole_height = np.linspace(0.1, 0.9, 21)
exteff_cyl = np.zeros(len(dipole_height))
exteff_3D = np.zeros(len(dipole_height))
for j in range(len(dipole_height)):
exteff_cyl[j] = extraction_eff_cyl(layer_thickness, dipole_height[j])
exteff_3D[j] = extraction_eff_3D(layer_thickness, dipole_height[j])
plt.plot(dipole_height, exteff_cyl, "bo-", label="cylindrical")
plt.plot(dipole_height, exteff_3D, "ro-", label="3D Cartesian")
plt.xlabel(f"height of dipole above ground plane " f"(fraction of layer thickness)")
plt.ylabel("extraction efficiency")
plt.legend()
if mp.am_master():
plt.savefig("extraction_eff_vs_dipole_height.png", dpi=150, bbox_inches="tight")
|