File: faraday-rotation.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (85 lines) | stat: -rw-r--r-- 2,199 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# From the Meep tutorial: plotting Faraday rotation of a linearly polarized plane wave
import meep as mp

## Parameters for a gyrotropic Lorentzian medium
epsn = 1.5  # background permittivity
f0 = 1.0  # natural frequency
gamma = 1e-6  # damping rate
sn = 0.1  # sigma parameter
b0 = 0.15  # magnitude of bias vector

susc = [
    mp.GyrotropicLorentzianSusceptibility(
        frequency=f0, gamma=gamma, sigma=sn, bias=mp.Vector3(0, 0, b0)
    )
]
mat = mp.Medium(epsilon=epsn, mu=1, E_susceptibilities=susc)

## Set up and run the Meep simulation:
tmax = 100
L = 20.0
cell = mp.Vector3(0, 0, L)
fsrc, src_z = 0.8, -8.5
pml_layers = [mp.PML(thickness=1.0, direction=mp.Z)]

sources = [
    mp.Source(
        mp.ContinuousSource(frequency=fsrc),
        component=mp.Ex,
        center=mp.Vector3(0, 0, src_z),
    )
]

sim = mp.Simulation(
    cell_size=cell,
    geometry=[],
    sources=sources,
    boundary_layers=pml_layers,
    default_material=mat,
    resolution=50,
)
sim.run(until=tmax)

import matplotlib.pyplot as plt

## Plot results:
import numpy as np

ex_data = sim.get_efield_x().real
ey_data = sim.get_efield_y().real

z = np.linspace(-L / 2, L / 2, len(ex_data))
plt.figure(1)
plt.plot(z, ex_data, label="Ex")
plt.plot(z, ey_data, label="Ey")
plt.xlim(-L / 2, L / 2)
plt.xlabel("z")
plt.legend()

## Comparison with analytic result:
dfsq = f0**2 - 1j * fsrc * gamma - fsrc**2
eperp = epsn + sn * f0**2 * dfsq / (dfsq**2 - (fsrc * b0) ** 2)
eta = sn * f0**2 * fsrc * b0 / (dfsq**2 - (fsrc * b0) ** 2)

k_gyro = 2 * np.pi * fsrc * np.sqrt(0.5 * (eperp - np.sqrt(eperp**2 - eta**2)))
Ex_theory = 0.37 * np.cos(k_gyro * (z - src_z)).real
Ey_theory = 0.37 * np.sin(k_gyro * (z - src_z)).real

plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(z, ex_data, label="Ex (MEEP)")
plt.plot(z, Ex_theory, "k--")
plt.plot(z, -Ex_theory, "k--", label="Ex envelope (theory)")
plt.xlim(-L / 2, L / 2)
plt.xlabel("z")
plt.legend(loc="lower right")

plt.subplot(2, 1, 2)
plt.plot(z, ey_data, label="Ey (MEEP)")
plt.plot(z, Ey_theory, "k--")
plt.plot(z, -Ey_theory, "k--", label="Ey envelope (theory)")
plt.xlim(-L / 2, L / 2)
plt.xlabel("z")
plt.legend(loc="lower right")
plt.tight_layout()
plt.show()