File: mode-decomposition.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (130 lines) | stat: -rw-r--r-- 3,749 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import matplotlib.pyplot as plt

import meep as mp

resolution = 25  # pixels/μm

w1 = 1.0  # width of waveguide 1
w2 = 2.0  # width of waveguide 2
Lw = 10.0  # length of waveguides 1 and 2

# lengths of waveguide taper
Lts = [2**m for m in range(4)]

dair = 3.0  # length of air region
dpml_x = 6.0  # length of PML in x direction
dpml_y = 2.0  # length of PML in y direction

sy = dpml_y + dair + w2 + dair + dpml_y

Si = mp.Medium(epsilon=12.0)

boundary_layers = [mp.PML(dpml_x, direction=mp.X), mp.PML(dpml_y, direction=mp.Y)]

lcen = 6.67  # mode wavelength
fcen = 1 / lcen  # mode frequency

symmetries = [mp.Mirror(mp.Y)]

R_coeffs = []
R_flux = []

for Lt in Lts:
    sx = dpml_x + Lw + Lt + Lw + dpml_x
    cell_size = mp.Vector3(sx, sy, 0)

    src_pt = mp.Vector3(-0.5 * sx + dpml_x + 0.2 * Lw)
    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=0.2 * fcen),
            center=src_pt,
            size=mp.Vector3(y=sy - 2 * dpml_y),
            eig_match_freq=True,
            eig_parity=mp.ODD_Z + mp.EVEN_Y,
        )
    ]

    # straight waveguide
    vertices = [
        mp.Vector3(-0.5 * sx - 1, 0.5 * w1),
        mp.Vector3(0.5 * sx + 1, 0.5 * w1),
        mp.Vector3(0.5 * sx + 1, -0.5 * w1),
        mp.Vector3(-0.5 * sx - 1, -0.5 * w1),
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        geometry=[mp.Prism(vertices, height=mp.inf, material=Si)],
        sources=sources,
        symmetries=symmetries,
    )

    mon_pt = mp.Vector3(-0.5 * sx + dpml_x + 0.7 * Lw)
    flux = sim.add_flux(
        fcen, 0, 1, mp.FluxRegion(center=mon_pt, size=mp.Vector3(y=sy - 2 * dpml_y))
    )

    sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))

    res = sim.get_eigenmode_coefficients(flux, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y)
    incident_coeffs = res.alpha
    incident_flux = mp.get_fluxes(flux)
    incident_flux_data = sim.get_flux_data(flux)

    sim.reset_meep()

    # linear taper
    vertices = [
        mp.Vector3(-0.5 * sx - 1, 0.5 * w1),
        mp.Vector3(-0.5 * Lt, 0.5 * w1),
        mp.Vector3(0.5 * Lt, 0.5 * w2),
        mp.Vector3(0.5 * sx + 1, 0.5 * w2),
        mp.Vector3(0.5 * sx + 1, -0.5 * w2),
        mp.Vector3(0.5 * Lt, -0.5 * w2),
        mp.Vector3(-0.5 * Lt, -0.5 * w1),
        mp.Vector3(-0.5 * sx - 1, -0.5 * w1),
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        geometry=[mp.Prism(vertices, height=mp.inf, material=Si)],
        sources=sources,
        symmetries=symmetries,
    )

    flux = sim.add_flux(
        fcen, 0, 1, mp.FluxRegion(center=mon_pt, size=mp.Vector3(y=sy - 2 * dpml_y))
    )
    sim.load_minus_flux_data(flux, incident_flux_data)

    sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))

    res2 = sim.get_eigenmode_coefficients(flux, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y)
    taper_coeffs = res2.alpha
    taper_flux = mp.get_fluxes(flux)

    R_coeffs.append(
        abs(taper_coeffs[0, 0, 1]) ** 2 / abs(incident_coeffs[0, 0, 0]) ** 2
    )
    R_flux.append(-taper_flux[0] / incident_flux[0])
    print(f"refl:, {Lt}, {R_coeffs[-1]:.8f}, {R_flux[-1]:.8f}")


if mp.am_master():
    plt.figure()
    plt.loglog(Lts, R_coeffs, "bo-", label="mode decomposition")
    plt.loglog(Lts, R_flux, "ro-", label="Poynting flux")
    plt.loglog(
        Lts,
        [0.005 / Lt**2 for Lt in Lts],
        "k-",
        label=r"quadratic reference (1/Lt$^2$)",
    )
    plt.legend(loc="upper right")
    plt.xlabel("taper length Lt (μm)")
    plt.ylabel("reflectance")
    plt.show()