File: mpb_hole_slab.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (74 lines) | stat: -rw-r--r-- 2,418 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import math

import meep as mp
from meep import mpb

# Photonic crystal slab consisting of a triangular lattice of air
# holes in a finite_thickness dielectric slab, optionally with a
# substrate on one side of the slab.  See the paper: S. G. Johnson,
# S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski,
# "Guided modes in photonic crystal slabs," PRB 60, 5751 (August
# 1999).

# Note that this structure has mirror symmetry throught the z=0 plane,
# and we are looking at k_vectors in the xy plane only.  Thus, we can
# break up the modes into even and odd (analogous to TE and TM), using
# the run_zeven and run_zodd functions.

h = 0.5  # the thickness of the slab
eps = 12.0  # the dielectric constant of the slab
loweps = 1.0  # the dielectric constant of the substrate
r = 0.3  # the radius of the holes
supercell_h = 4  # height of the supercell

# triangular lattice with vertical supercell:
geometry_lattice = mp.Lattice(
    size=mp.Vector3(1, 1, supercell_h),
    basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
    basis2=mp.Vector3(math.sqrt(3) / 2, -0.5),
)

geometry = [
    mp.Block(
        material=mp.Medium(epsilon=loweps),
        center=mp.Vector3(z=0.25 * supercell_h),
        size=mp.Vector3(mp.inf, mp.inf, 0.5 * supercell_h),
    ),
    mp.Block(material=mp.Medium(epsilon=eps), size=mp.Vector3(mp.inf, mp.inf, h)),
    mp.Cylinder(r, material=mp.air, height=supercell_h),
]

# 1st Brillouin zone of a triangular lattice:
Gamma = mp.Vector3()
M = mp.Vector3(y=0.5)
K = mp.Vector3(1 / -3, 1 / 3)

only_K = False  # run with only_K=true to only do this k_point
k_interp = 4  # the number of k points to interpolate
k_points = [K] if only_K else mp.interpolate(k_interp, [Gamma, M, K, Gamma])
resolution = mp.Vector3(32, 32, 16)
num_bands = 9

ms = mpb.ModeSolver(
    geometry_lattice=geometry_lattice,
    geometry=geometry,
    resolution=resolution,
    num_bands=num_bands,
    k_points=k_points,
)


def main():
    # Run even and odd bands, outputting fields only at the K point:
    if loweps == 1.0:
        # we only have even/odd classification for symmetric structure
        ms.run_zeven(mpb.output_at_kpoint(K, mpb.output_hfield_z))
        ms.run_zodd(mpb.output_at_kpoint(K, mpb.output_dfield_z))
    else:
        ms.run(mpb.output_at_kpoint(K, mpb.output_hfield_z), mpb.display_zparities)

    ms.display_eigensolver_stats()


if __name__ == "__main__":
    main()