1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# polarization grating from C. Oh and M.J. Escuti, Optics Letters, Vol. 33, No. 20, pp. 2287-9, 2008
# note: reference uses z as the propagation direction and y as the out-of-plane direction; this script uses x and z, respectively
import math
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
resolution = 50 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 1.0 # substrate thickness
dpad = 1.0 # padding thickness
k_point = mp.Vector3(0, 0, 0)
pml_layers = [mp.PML(thickness=dpml, direction=mp.X)]
n_0 = 1.55
delta_n = 0.159
epsilon_diag = mp.Matrix(
mp.Vector3(n_0**2, 0, 0),
mp.Vector3(0, n_0**2, 0),
mp.Vector3(0, 0, (n_0 + delta_n) ** 2),
)
wvl = 0.54 # center wavelength
fcen = 1 / wvl # center frequency
def pol_grating(d, ph, gp, nmode):
sx = dpml + dsub + d + d + dpad + dpml
sy = gp
cell_size = mp.Vector3(sx, sy, 0)
# twist angle of nematic director; from equation 1b
def phi(p):
xx = p.x - (-0.5 * sx + dpml + dsub)
if (xx >= 0) and (xx <= d):
return math.pi * p.y / gp + ph * xx / d
else:
return math.pi * p.y / gp - ph * xx / d + 2 * ph
# return the anisotropic permittivity tensor for a uniaxial, twisted nematic liquid crystal
def lc_mat(p):
# rotation matrix for rotation around x axis
Rx = mp.Matrix(
mp.Vector3(1, 0, 0),
mp.Vector3(0, math.cos(phi(p)), math.sin(phi(p))),
mp.Vector3(0, -math.sin(phi(p)), math.cos(phi(p))),
)
lc_epsilon = Rx * epsilon_diag * Rx.transpose()
lc_epsilon_diag = mp.Vector3(lc_epsilon[0].x, lc_epsilon[1].y, lc_epsilon[2].z)
lc_epsilon_offdiag = mp.Vector3(
lc_epsilon[1].x, lc_epsilon[2].x, lc_epsilon[2].y
)
return mp.Medium(
epsilon_diag=lc_epsilon_diag, epsilon_offdiag=lc_epsilon_offdiag
)
geometry = [
mp.Block(
center=mp.Vector3(-0.5 * sx + 0.5 * (dpml + dsub)),
size=mp.Vector3(dpml + dsub, mp.inf, mp.inf),
material=mp.Medium(index=n_0),
),
mp.Block(
center=mp.Vector3(-0.5 * sx + dpml + dsub + d),
size=mp.Vector3(2 * d, mp.inf, mp.inf),
material=lc_mat,
),
]
# linear-polarized planewave pulse source
src_pt = mp.Vector3(-0.5 * sx + dpml + 0.3 * dsub, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=0.05 * fcen),
component=mp.Ez,
center=src_pt,
size=mp.Vector3(0, sy, 0),
),
mp.Source(
mp.GaussianSource(fcen, fwidth=0.05 * fcen),
component=mp.Ey,
center=src_pt,
size=mp.Vector3(0, sy, 0),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k_point,
sources=sources,
default_material=mp.Medium(index=n_0),
)
tran_pt = mp.Vector3(0.5 * sx - dpml - 0.5 * dpad, 0, 0)
tran_flux = sim.add_flux(
fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=100)
input_flux = mp.get_fluxes(tran_flux)
sim.reset_meep()
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k_point,
sources=sources,
geometry=geometry,
)
tran_flux = sim.add_flux(
fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(until_after_sources=300)
res1 = sim.get_eigenmode_coefficients(
tran_flux, range(1, nmode + 1), eig_parity=mp.ODD_Z + mp.EVEN_Y
)
res2 = sim.get_eigenmode_coefficients(
tran_flux, range(1, nmode + 1), eig_parity=mp.EVEN_Z + mp.ODD_Y
)
angles = [math.degrees(math.acos(kdom.x / fcen)) for kdom in res1.kdom]
return input_flux[0], angles, res1.alpha[:, 0, 0], res2.alpha[:, 0, 0]
ph_uniaxial = 0 # chiral layer twist angle for uniaxial grating
ph_twisted = 70 # chiral layer twist angle for bilayer grating
gp = 6.5 # grating period
nmode = 5 # number of mode coefficients to compute
dd = np.arange(0.1, 3.5, 0.1) # chiral layer thickness
m0_uniaxial = np.zeros(dd.size)
m1_uniaxial = np.zeros(dd.size)
ang_uniaxial = np.zeros(dd.size)
m0_twisted = np.zeros(dd.size)
m1_twisted = np.zeros(dd.size)
ang_twisted = np.zeros(dd.size)
for k in range(len(dd)):
input_flux, angles, coeffs1, coeffs2 = pol_grating(
0.5 * dd[k], math.radians(ph_uniaxial), gp, nmode
)
tran = (abs(coeffs1) ** 2 + abs(coeffs2) ** 2) / input_flux
for m in range(nmode):
print(f"tran (uniaxial):, {m}, {angles[m]:.2f}, {tran[m]:.5f}")
m0_uniaxial[k] = tran[0]
m1_uniaxial[k] = tran[1]
ang_uniaxial[k] = angles[1]
input_flux, angles, coeffs1, coeffs2 = pol_grating(
dd[k], math.radians(ph_twisted), gp, nmode
)
tran = (abs(coeffs1) ** 2 + abs(coeffs2) ** 2) / input_flux
for m in range(nmode):
print(f"tran (twisted):, {m}, {angles[m]:.2f}, {tran[m]:.5f}")
m0_twisted[k] = tran[0]
m1_twisted[k] = tran[1]
ang_twisted[k] = angles[1]
cos_angles = [math.cos(math.radians(t)) for t in ang_uniaxial]
tran = m0_uniaxial + 2 * m1_uniaxial
eff_m0 = m0_uniaxial / tran
eff_m1 = (2 * m1_uniaxial / tran) / cos_angles
phase = delta_n * dd / wvl
eff_m0_analytic = [math.cos(math.pi * p) ** 2 for p in phase]
eff_m1_analytic = [math.sin(math.pi * p) ** 2 for p in phase]
plt.figure(dpi=150)
plt.subplot(1, 2, 1)
plt.plot(phase, eff_m0, "bo-", clip_on=False, label="0th order (meep)")
plt.plot(phase, eff_m0_analytic, "b--", clip_on=False, label="0th order (analytic)")
plt.plot(phase, eff_m1, "ro-", clip_on=False, label="±1 orders (meep)")
plt.plot(phase, eff_m1_analytic, "r--", clip_on=False, label="±1 orders (analytic)")
plt.axis([0, 1.0, 0, 1])
plt.xticks(list(np.arange(0, 1.2, 0.2)))
plt.xlabel("phase delay Δnd/λ")
plt.ylabel("diffraction efficiency @ λ = 0.54 μm")
plt.legend(loc="center")
plt.title("homogeneous uniaxial grating")
cos_angles = [math.cos(math.radians(t)) for t in ang_twisted]
tran = m0_twisted + 2 * m1_twisted
eff_m0 = m0_twisted / tran
eff_m1 = (2 * m1_twisted / tran) / cos_angles
plt.subplot(1, 2, 2)
plt.plot(phase, eff_m0, "bo-", clip_on=False, label="0th order (meep)")
plt.plot(phase, eff_m1, "ro-", clip_on=False, label="±1 orders (meep)")
plt.axis([0, 1.0, 0, 1])
plt.xticks(list(np.arange(0, 1.2, 0.2)))
plt.xlabel("phase delay Δnd/λ")
plt.ylabel("diffraction efficiency @ λ = 0.54 μm")
plt.legend(loc="center")
plt.title("bilayer twisted-nematic grating")
plt.show()
|