File: solve-cw.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (121 lines) | stat: -rw-r--r-- 3,011 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import matplotlib.pyplot as plt
import numpy as np
from numpy import linalg as LA

import meep as mp

n = 3.4
w = 1
r = 1
pad = 4
dpml = 2

sxy = 2 * (r + w + pad + dpml)
cell_size = mp.Vector3(sxy, sxy)

pml_layers = [mp.PML(dpml)]

nonpml_vol = mp.Volume(mp.Vector3(), size=mp.Vector3(sxy - 2 * dpml, sxy - 2 * dpml))

geometry = [
    mp.Cylinder(radius=r + w, material=mp.Medium(index=n)),
    mp.Cylinder(radius=r),
]

fcen = 0.118

src = [
    mp.Source(mp.ContinuousSource(fcen), component=mp.Ez, center=mp.Vector3(r + 0.1)),
    mp.Source(
        mp.ContinuousSource(fcen),
        component=mp.Ez,
        center=mp.Vector3(-(r + 0.1)),
        amplitude=-1,
    ),
]

symmetries = [mp.Mirror(mp.X, phase=-1), mp.Mirror(mp.Y, phase=+1)]

sim = mp.Simulation(
    cell_size=cell_size,
    geometry=geometry,
    sources=src,
    resolution=10,
    force_complex_fields=True,
    symmetries=symmetries,
    boundary_layers=pml_layers,
)

num_tols = 5
tols = np.power(10, np.arange(-8.0, -8.0 - num_tols, -1.0))
ez_dat = np.zeros((122, 122, num_tols), dtype=np.complex_)

for i in range(num_tols):
    sim.init_sim()
    sim.solve_cw(tols[i], 10000, 10)
    ez_dat[:, :, i] = sim.get_array(vol=nonpml_vol, component=mp.Ez)

err_dat = np.zeros(num_tols - 1)
for i in range(num_tols - 1):
    err_dat[i] = LA.norm(ez_dat[:, :, i] - ez_dat[:, :, num_tols - 1])

plt.figure(dpi=150)
plt.loglog(tols[: num_tols - 1], err_dat, "bo-")
plt.xlabel("frequency-domain solver tolerance")
plt.ylabel("L2 norm of error in fields")
plt.show()

eps_data = sim.get_array(vol=nonpml_vol, component=mp.Dielectric)
ez_data = np.real(ez_dat[:, :, num_tols - 1])

plt.figure()
plt.imshow(eps_data.transpose(), interpolation="spline36", cmap="binary")
plt.imshow(ez_data.transpose(), interpolation="spline36", cmap="RdBu", alpha=0.9)
plt.axis("off")
plt.show()

if np.all(np.diff(err_dat) < 0):
    print(
        "PASSED solve_cw test: error in the fields is decreasing with increasing resolution"
    )
else:
    print(
        "FAILED solve_cw test: error in the fields is NOT decreasing with increasing resolution"
    )

sim.reset_meep()

df = 0.08
src = [
    mp.Source(
        mp.GaussianSource(fcen, fwidth=df), component=mp.Ez, center=mp.Vector3(r + 0.1)
    ),
    mp.Source(
        mp.GaussianSource(fcen, fwidth=df),
        component=mp.Ez,
        center=mp.Vector3(-(r + 0.1)),
        amplitude=-1,
    ),
]

sim = mp.Simulation(
    cell_size=mp.Vector3(sxy, sxy),
    geometry=geometry,
    sources=src,
    resolution=10,
    symmetries=symmetries,
    boundary_layers=pml_layers,
)

dft_obj = sim.add_dft_fields([mp.Ez], fcen, 0, 1, where=nonpml_vol)

sim.run(until_after_sources=100)

eps_data = sim.get_array(vol=nonpml_vol, component=mp.Dielectric)
ez_data = np.real(sim.get_dft_array(dft_obj, mp.Ez, 0))

plt.figure()
plt.imshow(eps_data.transpose(), interpolation="spline36", cmap="binary")
plt.imshow(ez_data.transpose(), interpolation="spline36", cmap="RdBu", alpha=0.9)
plt.axis("off")
plt.show()