1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
"""A demonstration of computing the flux emitted in a single direction from a
collection of dipole emitters in an LED-like structure using reciprocity.
"""
from typing import List
import numpy as np
import matplotlib.pyplot as plt
import meep as mp
from meep.materials import Ag
resolution = 200 # pixels/μm
nfreq = 100 # number of frequencies
ndipole = 10 # number of point dipoles in forward simulation
fcen = 1.0 # center frequency of Gaussian source/monitors
df = 0.2 # frequency bandwidth of source/monitors
dpml = 1.0 # PML thickness
dair = 2.0 # air padding thickness
hrod = 0.7 # grating height
wrod = 0.5 # graing width
dsub = 5.0 # substrate thickness
dAg = 0.5 # Ag back reflecter thickness
sx = 1.1
sy = dpml + dair + hrod + dsub + dAg
cell_size = mp.Vector3(sx, sy)
pml_layers = [mp.PML(direction=mp.Y, thickness=dpml, side=mp.High)]
def substrate_geometry(is_textured: bool):
"""Returns the geometry of the LED-like structure.
Args:
is_textured: whether the substrate is textured or not.
"""
geometry = [
mp.Block(
material=mp.Medium(index=3.45),
center=mp.Vector3(0, 0.5 * sy - dpml - dair - hrod - 0.5 * dsub),
size=mp.Vector3(mp.inf, dsub, mp.inf),
),
mp.Block(
material=Ag,
center=mp.Vector3(0, -0.5 * sy + 0.5 * dAg),
size=mp.Vector3(mp.inf, dAg, mp.inf),
),
]
if is_textured:
geometry.append(
mp.Block(
material=mp.Medium(index=3.45),
center=mp.Vector3(0, 0.5 * sy - dpml - dair - 0.5 * hrod),
size=mp.Vector3(wrod, hrod, mp.inf),
)
)
return geometry
def forward(n: int, rt: int, is_textured: bool) -> [List, np.ndarray]:
"""Computes the Poynting flux in the +y direction in air
given a point dipole source positioned somewhere along a
line in the middle of the high-index substrate.
Args:
n: n'th position along a line of equally spaced dipoles.
rt: runtime of simulation after the source has turned off
in units of nfreq/df.
is_textured: whether the substrate is textured or not.
Returns:
The frequency and Poynting flux spectra.
"""
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Ez,
center=mp.Vector3(
sx * (-0.5 + n / ndipole),
-0.5 * sy + dAg + 0.5 * dsub,
),
)
]
geometry = substrate_geometry(is_textured)
sim = mp.Simulation(
cell_size=cell_size,
resolution=resolution,
k_point=mp.Vector3(),
boundary_layers=pml_layers,
geometry=geometry,
sources=sources,
)
flux_mon = sim.add_flux(
fcen,
df,
nfreq,
mp.FluxRegion(center=mp.Vector3(0, 0.5 * sy - dpml), size=mp.Vector3(sx)),
)
run_time = rt * nfreq / df
sim.run(until_after_sources=run_time)
res = sim.get_eigenmode_coefficients(flux_mon, [1], eig_parity=mp.ODD_Z)
flux = np.abs(res.alpha[0, :, 0]) ** 2
freqs = mp.get_flux_freqs(flux_mon)
return freqs, flux
def backward(rt: int, is_textured: bool) -> [List, np.ndarray]:
"""Computes the Poynting flux spectrum of the dipole emission using
an overlap integral of the DFT fields from a line monitor in the
high-index substrate given a planewave source in air propagating
in the -y direction.
Args:
rt: runtime of simulation after the source has turned off
in units of nfreq/df.
is_textured: whether the substrate is textured or not.
Returns:
The frequency and Poynting flux spectra.
"""
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Ez,
center=mp.Vector3(0, 0.5 * sy - dpml),
size=mp.Vector3(sx, 0),
)
]
geometry = substrate_geometry(is_textured)
sim = mp.Simulation(
cell_size=cell_size,
resolution=resolution,
k_point=mp.Vector3(),
boundary_layers=pml_layers,
geometry=geometry,
sources=sources,
)
dft_mon = sim.add_dft_fields(
[mp.Ez],
fcen,
df,
nfreq,
center=mp.Vector3(0, -0.5 * sy + dAg + 0.5 * dsub),
size=mp.Vector3(sx),
)
run_time = rt * nfreq / df
sim.run(until_after_sources=run_time)
freqs = mp.get_flux_freqs(dft_mon)
abs_flux = np.zeros(nfreq)
for nf in range(nfreq):
dft_ez = sim.get_dft_array(dft_mon, mp.Ez, nf)
abs_flux[nf] = np.sum(np.abs(dft_ez) ** 2)
return freqs, abs_flux
if __name__ == "__main__":
fwd_flat_flux = np.zeros((nfreq, ndipole))
fwd_text_flux = np.zeros((nfreq, ndipole))
for d in range(ndipole):
fwd_freqs, fwd_flat_flux[:, d] = forward(d, 2, False)
_, fwd_text_flux[:, d] = forward(d, 4, True)
fwd_norm_flux = np.mean(fwd_text_flux, axis=1) / np.mean(fwd_flat_flux, axis=1)
bwd_freqs, bwd_flat_flux = backward(2, False)
_, bwd_text_flux = backward(4, True)
bwd_norm_flux = bwd_text_flux / bwd_flat_flux
plt.figure()
plt.semilogy(fwd_freqs, fwd_norm_flux, "b-", label="forward")
plt.semilogy(bwd_freqs, bwd_norm_flux, "r-", label="backward")
plt.xlabel("frequency")
plt.ylabel("normalized flux")
plt.legend()
if mp.am_master():
plt.savefig(
"forward_vs_backward_flux_spectrum.png",
bbox_inches="tight",
dpi=150,
)
|