1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
import math
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
resolution = 25 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 2.0 # substrate thickness
dpad = 2.0 # padding betweeen zone plate and PML
zh = 0.5 # zone-plate height
zN = 25 # number of zones (odd zones: π phase shift, even zones: none)
focal_length = 200 # focal length of zone plate
spot_length = 100 # far-field line length
ff_res = 10 # far-field resolution
pml_layers = [mp.PML(thickness=dpml)]
wvl_cen = 0.5
frq_cen = 1 / wvl_cen
dfrq = 0.2 * frq_cen
## radii of zones
## ref: eq. 7 of http://zoneplate.lbl.gov/theory
r = [
math.sqrt(n * wvl_cen * (focal_length + n * wvl_cen / 4)) for n in range(1, zN + 1)
]
sr = r[-1] + dpad + dpml
sz = dpml + dsub + zh + dpad + dpml
cell_size = mp.Vector3(sr, 0, sz)
sources = [
mp.Source(
mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
component=mp.Er,
center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
size=mp.Vector3(sr),
),
mp.Source(
mp.GaussianSource(frq_cen, fwidth=dfrq, is_integrated=True),
component=mp.Ep,
center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + dpml),
size=mp.Vector3(sr),
amplitude=-1j,
),
]
glass = mp.Medium(index=1.5)
geometry = [
mp.Block(
material=glass,
size=mp.Vector3(sr, 0, dpml + dsub),
center=mp.Vector3(0.5 * sr, 0, -0.5 * sz + 0.5 * (dpml + dsub)),
)
]
geometry.extend(
mp.Block(
material=glass if n % 2 == 0 else mp.vacuum,
size=mp.Vector3(r[n], 0, zh),
center=mp.Vector3(0.5 * r[n], 0, -0.5 * sz + dpml + dsub + 0.5 * zh),
)
for n in range(zN - 1, -1, -1)
)
sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
geometry=geometry,
dimensions=mp.CYLINDRICAL,
m=-1,
)
## near-field monitor
n2f_obj = sim.add_near2far(
frq_cen,
0,
1,
mp.Near2FarRegion(
center=mp.Vector3(0.5 * (sr - dpml), 0, 0.5 * sz - dpml),
size=mp.Vector3(sr - dpml),
),
mp.Near2FarRegion(
center=mp.Vector3(sr - dpml, 0, 0.5 * sz - dpml - 0.5 * (dsub + zh + dpad)),
size=mp.Vector3(z=dsub + zh + dpad),
),
)
sim.plot2D()
if mp.am_master():
plt.savefig("zone_plate_epsilon.png", bbox_inches="tight", dpi=150)
sim.run(until_after_sources=100)
ff_r = sim.get_farfields(
n2f_obj,
ff_res,
center=mp.Vector3(
0.5 * (sr - dpml), 0, -0.5 * sz + dpml + dsub + zh + focal_length
),
size=mp.Vector3(sr - dpml),
)
ff_z = sim.get_farfields(
n2f_obj,
ff_res,
center=mp.Vector3(z=-0.5 * sz + dpml + dsub + zh + focal_length),
size=mp.Vector3(z=spot_length),
)
E2_r = (
np.absolute(ff_r["Ex"]) ** 2
+ np.absolute(ff_r["Ey"]) ** 2
+ np.absolute(ff_r["Ez"]) ** 2
)
E2_z = (
np.absolute(ff_z["Ex"]) ** 2
+ np.absolute(ff_z["Ey"]) ** 2
+ np.absolute(ff_z["Ez"]) ** 2
)
if mp.am_master():
plt.figure(dpi=200)
plt.subplot(1, 2, 1)
plt.semilogy(np.linspace(0, sr - dpml, len(E2_r)), E2_r, "bo-")
plt.xlim(-2, 20)
plt.xticks(list(np.arange(0, 25, 5)))
plt.grid(True, axis="y", which="both", ls="-")
plt.xlabel(r"$r$ coordinate (μm)")
plt.ylabel(r"energy density of far fields, |E|$^2$")
plt.subplot(1, 2, 2)
plt.semilogy(
np.linspace(
focal_length - 0.5 * spot_length,
focal_length + 0.5 * spot_length,
len(E2_z),
),
E2_z,
"bo-",
)
plt.grid(True, axis="y", which="both", ls="-")
plt.xlabel(r"$z$ coordinate (μm)")
plt.ylabel(r"energy density of far fields, |E|$^2$")
plt.suptitle(f"binary-phase zone plate with focal length $z$ = {focal_length} μm")
plt.tight_layout()
plt.savefig("zone_plate_farfields.png")
|