File: geom.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (1768 lines) | stat: -rwxr-xr-x 65,265 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
import functools
import math
import numbers
import operator
import warnings
from collections import namedtuple
from copy import deepcopy
from numbers import Number

import numpy as np

import meep as mp

FreqRange = namedtuple("FreqRange", ["min", "max"])


def check_nonnegative(prop, val):
    if val >= 0:
        return val
    else:
        raise ValueError(f"{prop} cannot be negative. Got {val}")


def init_do_averaging(mat_func):
    if not hasattr(mat_func, "do_averaging"):
        mat_func.do_averaging = False


class Vector3:
    """
    Properties:

    **`x`, `y`, `z` [`float` or `complex`]** — The `x`, `y`, and `z` components of the
    vector. Generally, functions that take a `Vector3` as an argument will accept an
    iterable (e.g., a tuple or list) and automatically convert to a `Vector3`.
    """

    def __init__(self, x: float = 0.0, y: float = 0.0, z: float = 0.0):
        """
        Create a new `Vector3` with the given components. All three components default to
        zero. This can also be represented simply as `(x,y,z)` or `[x,y,z]`.
        """
        self.x = float(x) if type(x) is int else x
        self.y = float(y) if type(y) is int else y
        self.z = float(z) if type(z) is int else z

    def __eq__(self, other):
        """
        Returns whether or not the two vectors are numerically equal. Beware of using this
        function after operations that may have some error due to the finite precision of
        floating-point numbers; use `close` instead.

        ```python
        v1 == v2
        ```
        """
        return self.x == other.x and self.y == other.y and self.z == other.z

    def __ne__(self, other):
        """
        Returns whether or not the two vectors are numerically unequal. Beware of using
        this function after operations that may have some error due to the finite
        precision of floating-point numbers; use `close` instead.

        ```python
        v1 != v2
        ```
        """
        return not self == other

    def __add__(self, other):
        """
        Return the sum of the two vectors.

        ```python
        v3 = v1 + v2
        ```
        """
        if isinstance(other, GeometricObject):
            return NotImplemented

        x = self.x + other.x
        y = self.y + other.y
        z = self.z + other.z

        return Vector3(x, y, z)

    def __sub__(self, other):
        """
        Return the difference of the two vectors.

        ```python
        v3 = v1 - v2
        ```
        """
        x = self.x - other.x
        y = self.y - other.y
        z = self.z - other.z

        return Vector3(x, y, z)

    def __mul__(self, other):
        """
        If `other` is a `Vector3`, returns the dot product of `v1` and `other`. If `other`
        is a number, then `v1` is scaled by the number.

        ```python
        c = v1 * other
        ```
        """
        if type(other) is Vector3:
            return self.dot(other)
        elif isinstance(other, Number):
            return self.scale(other)
        else:
            raise TypeError(f"No operation known for 'Vector3 * {type(other)}'")

    def __truediv__(self, other):
        if type(other) is Vector3:
            return Vector3(self.x / other.x, self.y / other.y, self.z / other.z)
        elif isinstance(other, Number):
            return Vector3(self.x / other, self.y / other, self.z / other)
        else:
            raise TypeError(f"No operation known for 'Vector3 / {type(other)}'")

    def __rmul__(self, other):
        """
        If `other` is a `Vector3`, returns the dot product of `v1` and `other`. If `other`
        is a number, then `v1` is scaled by the number.

        ```python
        c = other * v1
        ```
        """
        if isinstance(other, Number):
            return self.scale(other)
        else:
            raise TypeError(f"No operation known for '{type(other)} * Vector3'")

    def __getitem__(self, i):
        if i == 0:
            return self.x
        elif i == 1:
            return self.y
        elif i == 2:
            return self.z
        else:
            raise IndexError(f"No value at index {i}")

    def __repr__(self):
        return f"Vector3<{self.x}, {self.y}, {self.z}>"

    def __array__(self):
        return np.array([self.x, self.y, self.z])

    def conj(self):
        return Vector3(self.x.conjugate(), self.y.conjugate(), self.z.conjugate())

    def scale(self, s):
        x = self.x * s
        y = self.y * s
        z = self.z * s

        return Vector3(x, y, z)

    def dot(self, v):
        """
        Returns the dot product of *`self`* and *`v`*.

        ```python
        v3 = v1.dot(v2)
        ```
        """
        return self.x * v.x + self.y * v.y + self.z * v.z

    def cdot(self, v):
        """Returns the conjugated dot product: `conj(self)` dot `v`."""
        return self.conj().dot(v)

    def cross(self, v):
        """
        Return the cross product of `self` and `v`.

        ```python
        v3 = v1.cross(v2)
        ```
        """
        x = self.y * v.z - self.z * v.y
        y = self.z * v.x - self.x * v.z
        z = self.x * v.y - self.y * v.x

        return Vector3(x, y, z)

    def norm(self):
        """
        Returns the length `math.sqrt(abs(self.dot(self)))` of the given vector.

        ```python
        v2 = v1.norm()
        ```
        """
        return math.sqrt(abs(self.cdot(self).real))

    def unit(self):
        """
        Returns a unit vector in the direction of the vector.

        ```python
        v2 = v1.unit()
        ```
        """
        return self.scale(1 / self.norm())

    def close(self, v, tol=1.0e-7):
        """
        Returns whether or not the corresponding components of the `self` and `v` vectors
        are within `tol` of each other. Defaults to 1e-7.

        ```python
        v1.close(v2, [tol])
        ```
        """
        return (
            abs(self.x - v.x) <= tol
            and abs(self.y - v.y) <= tol
            and abs(self.z - v.z) <= tol
        )

    def rotate(self, axis, theta):
        """
        Returns the vector rotated by an angle *`theta`* (in radians) in the right-hand
        direction around the *`axis`* vector (whose length is ignored). You may find the
        python functions `math.degrees` and `math.radians` useful to convert angles
        between degrees and radians.

        ```python
        v2 = v1.rotate(axis, theta)
        ```
        """
        u = axis.unit()
        vpar = u.scale(u.dot(self))
        vcross = u.cross(self)
        vperp = self - vpar
        return vpar + (vperp.scale(math.cos(theta)) + vcross.scale(math.sin(theta)))

    # rotate vectors in lattice/reciprocal coords (note that the axis
    # is also given in the corresponding basis):

    def rotate_lattice(self, axis, theta, lat):
        a = lattice_to_cartesian(axis, lat)
        v = lattice_to_cartesian(self, lat)
        return cartesian_to_lattice(v.rotate(a, theta), lat)

    def rotate_reciprocal(self, axis, theta, lat):
        a = reciprocal_to_cartesian(axis, lat)
        v = reciprocal_to_cartesian(self, lat)
        return cartesian_to_reciprocal(v.rotate(a, theta), lat)


class Medium:
    """
    This class is used to specify the materials that geometric objects are made of. It
    represents an electromagnetic medium which is possibly nonlinear and/or dispersive.
    See also [Materials](Materials.md). To model a perfectly-conducting metal, use the
    predefined `metal` object, above. To model imperfect conductors, use a dispersive
    dielectric material. See also the [Predefined Variables](#predefined-variables):
    `metal`, `perfect_electric_conductor`, and `perfect_magnetic_conductor`.

    **Material Function**

    Any function that accepts a `Medium` instance can also accept a user-defined Python
    function. This allows you to specify the material as an arbitrary function of
    position. The function must have one argument, the position `Vector3`, and return the
    material at that point, which should be a Python `Medium` instance. This is
    accomplished by passing a function to the `material_function` keyword argument in the
    `Simulation` constructor, or the `material` keyword argument in any `GeometricObject`
    constructor. For an example, see [Subpixel Smoothing/Enabling Averaging for Material
    Function](Subpixel_Smoothing.md#enabling-averaging-for-material-function).

    Instead of the `material` or `material_function` arguments, you can also use the
    `epsilon_func` keyword argument to `Simulation` and `GeometricObject`, which takes a
    function of position that returns the dielectric constant at that point.

    **Important:** If your material function returns nonlinear, dispersive (Lorentzian or
    conducting), or magnetic materials, you should also include a list of these materials
    in the `extra_materials` input variable (above) to let Meep know that it needs to
    support these material types in your simulation. For dispersive materials, you need to
    include a material with the *same* values of $\\gamma_n$ and $\\omega_n$, so
    you can only have a finite number of these, whereas $\\sigma_n$ can vary
    continuously and a matching $\\sigma_n$ need not be specified in
    `extra_materials`. For nonlinear or conductivity materials, your `extra_materials`
    list need not match the actual values of $\\sigma$ or $\\chi$ returned by your material function,
    which can vary continuously.

    **Complex $\\varepsilon$ and $\\mu$**: you cannot specify a
    frequency-independent complex $\\varepsilon$ or $\\mu$ in Meep where
    the imaginary part is a frequency-independent loss but there is an
    alternative.  That is because there are only two important
    physical situations. First, if you only care about the loss in a
    narrow bandwidth around some frequency, you can set the loss at
    that frequency via the
    [conductivity](Materials.md#conductivity-and-complex).  Second, if
    you care about a broad bandwidth, then all physical materials have
    a frequency-dependent complex $\\varepsilon$ and/or $\\mu$, and you
    need to specify that frequency dependence by fitting to Lorentzian
    and/or Drude resonances via the `LorentzianSusceptibility` or
    `DrudeSusceptibility` classes below.

    Dispersive dielectric and magnetic materials, above, are specified via a list of
    objects that are subclasses of type `Susceptibility`.
    """

    def __init__(
        self,
        epsilon_diag=Vector3(1, 1, 1),
        epsilon_offdiag=Vector3(),
        mu_diag=Vector3(1, 1, 1),
        mu_offdiag=Vector3(),
        E_susceptibilities=None,
        H_susceptibilities=None,
        E_chi2_diag=Vector3(),
        E_chi3_diag=Vector3(),
        H_chi2_diag=Vector3(),
        H_chi3_diag=Vector3(),
        D_conductivity_diag=Vector3(),
        D_conductivity_offdiag=Vector3(),
        B_conductivity_diag=Vector3(),
        B_conductivity_offdiag=Vector3(),
        epsilon=None,
        index=None,
        mu=None,
        chi2=None,
        chi3=None,
        D_conductivity=None,
        B_conductivity=None,
        E_chi2=None,
        E_chi3=None,
        H_chi2=None,
        H_chi3=None,
        valid_freq_range=FreqRange(min=-mp.inf, max=mp.inf),
    ):
        """
        Creates a `Medium` object.

        + **`epsilon` [`number`]** The frequency-independent isotropic relative
          permittivity or dielectric constant. Default is 1. You can also use `index=n` as
          a synonym for `epsilon=n*n`; note that this is not really the refractive index
          if you also specify μ, since the true index is $\\sqrt{\\mu\\varepsilon}$. Using
          `epsilon=ep` is actually a synonym for `epsilon_diag=mp.Vector3(ep, ep, ep)`.

        + **`epsilon_diag` and `epsilon_offdiag` [`Vector3`]** — These properties allow
          you to specify ε as an arbitrary real-symmetric tensor by giving the diagonal
          and offdiagonal parts. Specifying `epsilon_diag=Vector3(a, b, c)` and/or
          `epsilon_offdiag=Vector3(u, v, w)` corresponds to a relative permittivity ε
          tensor \\begin{pmatrix} a & u & v \\\\ u & b & w \\\\ v & w & c \\end{pmatrix}
          Default is the identity matrix ($a = b = c = 1$ and $u = v = w = 0$).

        + **`mu` [`number`]** — The frequency-independent isotropic relative permeability
          μ. Default is 1. Using `mu=pm` is actually a synonym for `mu_diag=mp.Vector3(pm,
          pm, pm)`.

        + **`mu_diag` and `mu_offdiag` [`Vector3`]** — These properties allow you to
          specify μ as an arbitrary real-symmetric tensor by giving the diagonal and
          offdiagonal parts exactly as for ε above. Default is the identity matrix.

        + **`D_conductivity` [`number`]** — The frequency-independent electric
          conductivity $\\sigma_D$. Default is 0. You can also specify a diagonal
          anisotropic conductivity tensor by using the property `D_conductivity_diag`
          which takes a `Vector3` to give the $\\sigma_D$ tensor diagonal. See also
          [Conductivity](Materials.md#conductivity-and-complex).

        + **`B_conductivity` [`number`]** — The frequency-independent magnetic
          conductivity $\\sigma_B$. Default is 0. You can also specify a diagonal
          anisotropic conductivity tensor by using the property `B_conductivity_diag`
          which takes a `Vector3` to give the $\\sigma_B$ tensor diagonal. See also
          [Conductivity](Materials.md#conductivity-and-complex).

        + **`chi2` [`number`]** — The nonlinear electric
          [Pockels](https://en.wikipedia.org/wiki/Pockels_effect) susceptibility
          $\\chi^{(2)}$ (quadratic nonlinearity). Default is 0. See also [Nonlinearity](Materials.md#nonlinearity).
          This is equivalent to setting `E_chi2`; alternatively, an analogous magnetic
          nonlinearity can be specified using `H_chi2`. These are isotropic nonlinearities,
          but *diagonal* anisotropic polarizations of the form $\\chi_i^{(2)} E_i^2$ can
          be specified with `E_chi2_diag` (which defaults to `[E_chi2,E_chi2,E_chi2]`).

        + **`chi3` [`number`]** — The nonlinear electric
          [Kerr](https://en.wikipedia.org/wiki/Kerr_effect) susceptibility $\\chi^{(3)}$
          (cubic nonlinearity). Default is 0. See also [Nonlinearity](Materials.md#nonlinearity).
          This is equivalent to setting `E_chi3`; alternatively, an analogous magnetic nonlinearity
          can be specified using `H_chi3`. These are isotropic nonlinearities, but *diagonal*
          anisotropic polarizations of the form $\\chi_i^{(3)} |E|^2 E_i$ can be specified with
          `E_chi3_diag` (which defaults to `[E_chi3,E_chi3,E_chi3]`).

        + **`E_susceptibilities` [ list of `Susceptibility` class ]** — List of dispersive
          susceptibilities (see below) added to the dielectric constant ε in order to
          model material dispersion. Defaults to none (empty list). See also [Material
          Dispersion](Materials.md#material-dispersion).

        + **`H_susceptibilities` [ list of `Susceptibility` class ]** — List of dispersive
          susceptibilities (see below) added to the permeability μ in order to model
          material dispersion. Defaults to none (empty list). See also [Material
          Dispersion](Materials.md#material-dispersion).
        """

        if epsilon:
            epsilon_diag = Vector3(epsilon, epsilon, epsilon)
        elif index:
            i2 = index * index
            epsilon_diag = Vector3(i2, i2, i2)

        if mu:
            mu_diag = Vector3(mu, mu, mu)

        if D_conductivity:
            D_conductivity_diag = Vector3(
                D_conductivity, D_conductivity, D_conductivity
            )
        if B_conductivity:
            B_conductivity_diag = Vector3(
                B_conductivity, B_conductivity, B_conductivity
            )

        if E_chi2:
            E_chi2_diag = Vector3(E_chi2, E_chi2, E_chi2)
        if E_chi3:
            E_chi3_diag = Vector3(E_chi3, E_chi3, E_chi3)
        if H_chi2:
            H_chi2_diag = Vector3(H_chi2, H_chi2, H_chi2)
        if H_chi3:
            H_chi3_diag = Vector3(H_chi3, H_chi3, H_chi3)

        self.epsilon_diag = Vector3(*epsilon_diag)
        self.epsilon_offdiag = Vector3(*epsilon_offdiag)
        self.mu_diag = Vector3(*mu_diag)
        self.mu_offdiag = Vector3(*mu_offdiag)
        self.E_susceptibilities = E_susceptibilities or []
        self.H_susceptibilities = H_susceptibilities or []
        self.E_chi2_diag = Vector3(chi2, chi2, chi2) if chi2 else Vector3(*E_chi2_diag)
        self.E_chi3_diag = Vector3(chi3, chi3, chi3) if chi3 else Vector3(*E_chi3_diag)
        self.H_chi2_diag = Vector3(*H_chi2_diag)
        self.H_chi3_diag = Vector3(*H_chi3_diag)
        self.D_conductivity_diag = Vector3(*D_conductivity_diag)
        self.D_conductivity_offdiag = Vector3(*D_conductivity_offdiag)
        self.B_conductivity_diag = Vector3(*B_conductivity_diag)
        self.B_conductivity_offdiag = Vector3(*D_conductivity_offdiag)
        self.valid_freq_range = valid_freq_range

    def __repr__(self):
        return "Medium()"

    def transform(self, m):
        """
        Transforms `epsilon`, `mu`, and `sigma` of any [susceptibilities](#susceptibility)
        by the 3×3 matrix `m`. If `m` is a [rotation
        matrix](https://en.wikipedia.org/wiki/Rotation_matrix), then the principal axes of
        the susceptibilities are rotated by `m`.  More generally, the susceptibilities χ
        are transformed to MχMᵀ/|det M|, which corresponds to [transformation
        optics](http://math.mit.edu/~stevenj/18.369/coordinate-transform.pdf) for an
        arbitrary curvilinear coordinate transformation with Jacobian matrix M. The
        absolute value of the determinant is to prevent inadvertent construction of
        left-handed materials, which are [problematic in nondispersive
        media](FAQ.md#why-does-my-simulation-diverge-if-0).
        """
        eps = Matrix(
            mp.Vector3(
                self.epsilon_diag.x, self.epsilon_offdiag.x, self.epsilon_offdiag.y
            ),
            mp.Vector3(
                self.epsilon_offdiag.x, self.epsilon_diag.y, self.epsilon_offdiag.z
            ),
            mp.Vector3(
                self.epsilon_offdiag.y, self.epsilon_offdiag.z, self.epsilon_diag.z
            ),
        )
        mu = Matrix(
            mp.Vector3(self.mu_diag.x, self.mu_offdiag.x, self.mu_offdiag.y),
            mp.Vector3(self.mu_offdiag.x, self.mu_diag.y, self.mu_offdiag.z),
            mp.Vector3(self.mu_offdiag.y, self.mu_offdiag.z, self.mu_diag.z),
        )

        new_eps = (m * eps * m.transpose()) / abs(m.determinant())
        new_mu = (m * mu * m.transpose()) / abs(m.determinant())
        self.epsilon_diag = mp.Vector3(new_eps.c1.x, new_eps.c2.y, new_eps.c3.z)
        self.epsilon_offdiag = mp.Vector3(new_eps.c2.x, new_eps.c3.x, new_eps.c3.y)
        self.mu_diag = mp.Vector3(new_mu.c1.x, new_mu.c2.y, new_mu.c3.z)
        self.mu_offdiag = mp.Vector3(new_mu.c2.x, new_mu.c3.x, new_mu.c3.y)

        for s in self.E_susceptibilities:
            s.transform(m)

        for s in self.H_susceptibilities:
            s.transform(m)

    def rotate(self, axis, theta):
        T = get_rotation_matrix(axis, theta)
        self.transform(T)

    def epsilon(self, freq):
        """
        Returns the medium's permittivity tensor as a 3x3 Numpy array at the specified
        frequency `freq` which can be either a scalar, list, or Numpy array. In the case
        of a list/array of N frequency points, a Numpy array of size Nx3x3 is returned.
        """
        return self._get_epsmu(
            self.epsilon_diag,
            self.epsilon_offdiag,
            self.E_susceptibilities,
            self.D_conductivity_diag,
            self.D_conductivity_offdiag,
            freq,
        )

    def mu(self, freq):
        """
        Returns the medium's permeability tensor as a 3x3 Numpy array at the specified
        frequency `freq` which can be either a scalar, list, or Numpy array. In the case
        of a list/array of N frequency points, a Numpy array of size Nx3x3 is returned.
        """
        return self._get_epsmu(
            self.mu_diag,
            self.mu_offdiag,
            self.H_susceptibilities,
            self.B_conductivity_diag,
            self.B_conductivity_offdiag,
            freq,
        )

    def _get_epsmu(
        self,
        diag,
        offdiag,
        susceptibilities,
        conductivity_diag,
        conductivity_offdiag,
        freq,
    ):
        # Clean the input
        if np.isscalar(freq):
            freqs = np.array(freq)[np.newaxis, np.newaxis, np.newaxis]
        else:
            freqs = np.squeeze(freq)
            freqs = freqs[:, np.newaxis, np.newaxis]

        # Check for values outside of allowed ranges
        if np.min(np.squeeze(freqs)) < self.valid_freq_range.min:
            raise ValueError(
                f"User specified frequency {np.min(np.squeeze(freqs))} is below the Medium's limit, {self.valid_freq_range.min}."
            )

        if np.max(np.squeeze(freqs)) > self.valid_freq_range.max:
            raise ValueError(
                f"User specified frequency {np.max(np.squeeze(freqs))} is above the Medium's limit, {self.valid_freq_range.max}."
            )

        # Initialize with instantaneous dielectric tensor
        epsmu = np.expand_dims(Matrix(diag=diag, offdiag=offdiag), axis=0)

        # Iterate through susceptibilities
        for i_sus in range(len(susceptibilities)):
            epsmu = epsmu + susceptibilities[i_sus].eval_susceptibility(freqs)

        # Account for conductivity term (only multiply if nonzero to avoid unnecessary complex numbers)
        conductivity = np.expand_dims(
            Matrix(diag=conductivity_diag, offdiag=conductivity_offdiag), axis=0
        )
        if np.count_nonzero(conductivity) > 0:
            epsmu = (1 + 1j / (2 * np.pi * freqs) * conductivity) * epsmu

        # Convert list matrix to 3D numpy array size [freqs,3,3]
        return np.squeeze(epsmu)


class MaterialGrid:
    """
    This class is used to specify materials on a rectilinear grid. A class object is passed
    as the `material` argument of a [`Block`](#block) geometric object or the `default_material`
    argument of the [`Simulation`](#Simulation) constructor (similar to a [material function](#medium)).
    """

    def check_weights(self, w):
        if np.amin(w) >= 0.0 and np.amax(w) <= 1.0:
            return w
        warnings.warn(
            "The weights parameter of MaterialGrid must be in the range [0,1]."
        )
        return np.clip(w, 0.0, 1.0)

    def __init__(
        self,
        grid_size,
        medium1,
        medium2,
        weights=None,
        grid_type="U_DEFAULT",
        do_averaging=True,
        beta=0,
        eta=0.5,
        damping=0,
    ):
        """
        Creates a `MaterialGrid` object.

        The input are two materials `medium1` and `medium2` along with a weight function $u(x)$ which
        is defined on a rectilinear grid by the NumPy array `weights` of size `grid_size` (a 3-tuple or
        `Vector3` of integers $N_x$,$N_y$,$N_z$). The resolution of the grid may be nonuniform depending
        on the `size` property of the `Block` object as shown in the following example for a 2d `MaterialGrid`
        with $N_x=5$ and $N_y=4$. $N_z=0$ implies that the `MaterialGrid` is extruded in the $z$ direction.
        The grid points are defined at the corners of the voxels.

        ![](images/material_grid.png#center)

        Elements of the `weights` array must be in the range [0,1] where 0 is `medium1` and 1 is `medium2`.
        The `weights` array is used to define a linear interpolation from `medium1` to `medium2`.
        Two material types are supported: (1) frequency-independent isotropic $\\varepsilon$ (`epsilon_diag`
        and `epsilon_offdiag` are interpolated) and (2) `LorentzianSusceptibility` (`sigma` and `sigma_offdiag`
        are interpolated). `medium1` and `medium2` must both be the same type. The materials are
        [bilinearly interpolated](https://en.wikipedia.org/wiki/Bilinear_interpolation) from the rectilinear
        grid to Meep's [Yee grid](Yee_Lattice.md).

        For improving accuracy, [subpixel smoothing](Subpixel_Smoothing.md) can be enabled by specifying
        `do_averaging=True`. If you want to use a material grid to define a (nearly) discontinuous,
        piecewise-constant material that is *either* `medium1` or `medium2` almost everywhere, you can
        optionally enable a (smoothed) *projection* feature by setting the parameter `beta` to a
        positive value. When the projection feature is enabled, the weights $u(x)$ can be thought of as a
        [level-set function](https://en.wikipedia.org/wiki/Level-set_method) defining an interface at
        $u(x)=\\eta$ with a smoothing factor $\\beta$ where $\\beta=+\\infty$ gives an unsmoothed,
        discontinuous interface. The projection operator is $(\\tanh(\\beta\\times\\eta)
        +\\tanh(\\beta\\times(u-\\eta)))/(\\tanh(\\beta\\times\\eta)+\\tanh(\\beta\\times(1-\\eta)))$
        involving the parameters `beta` ($\\beta$: bias or "smoothness" of the turn on) and `eta`
        ($\\eta$: offset for erosion/dilation). The level set provides a general approach for defining
        a *discontinuous* function from otherwise continuously varying (via the bilinear interpolation)
        grid values. Subpixel smoothing is fast and accurate because it exploits an analytic formulation
        for level-set functions.

        A nonzero `damping` term creates an artificial conductivity $\\sigma = u(1-u)*$`damping`, which acts as
        dissipation loss that penalizes intermediate pixel values of non-binarized structures. The value of
        `damping` should be proportional to $2\\pi$ times the typical frequency of the problem.

        It is possible to overlap any number of different `MaterialGrid`s. This can be useful for defining
        grids which are symmetric (e.g., mirror, rotation). One way to set this up is by overlapping a
        given `MaterialGrid` object with a symmetrized copy of itself. In the case of spatially overlapping
        `MaterialGrid` objects (with no intervening objects), any overlapping points are computed using the
        method `grid_type` which is one of `"U_MIN"` (minimum of the overlapping grid values), `"U_PROD"`
        (product), `"U_MEAN"` (mean), `"U_DEFAULT"` (topmost material grid). In general, these `"U_*"` options
        allow you to combine any material grids that overlap in space with no intervening objects.
        """
        self.grid_size = mp.Vector3(*grid_size)
        self.medium1 = medium1
        self.medium2 = medium2

        def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
            return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

        if isclose(self.grid_size.x, 0):
            self.grid_size.x = 1
        if isclose(self.grid_size.y, 0):
            self.grid_size.y = 1
        if isclose(self.grid_size.z, 0):
            self.grid_size.z = 1
        self.num_params = int(self.grid_size.x * self.grid_size.y * self.grid_size.z)
        self.do_averaging = do_averaging
        self.beta = beta
        self.eta = eta
        self.damping = damping
        if weights is None:
            self.weights = np.zeros((self.num_params,))
        elif weights.size != self.num_params:
            raise ValueError(
                "weights of shape {} do not match user specified grid dimension: {}".format(
                    weights.size, self.grid_size
                )
            )
        else:
            self.weights = self.check_weights(weights).flatten().astype(np.float64)

        grid_type_dict = {"U_MIN": 0, "U_PROD": 1, "U_MEAN": 2, "U_DEFAULT": 3}
        if grid_type not in grid_type_dict:
            raise ValueError(
                "Invalid grid_type: {}. Must be either U_MIN, U_PROD, U_MEAN, or U_DEFAULT".format(
                    grid_type_dict
                )
            )
        self.grid_type = grid_type_dict[grid_type]

        self.swigobj = None

    def update_weights(self, x):
        """
        Reset the `weights` to `x`.
        """
        if x.size != self.num_params:
            raise ValueError(
                f"weights of shape {self.weights.size} do not match user specified grid dimension: {self.grid_size}"
            )

        self.weights[:] = self.check_weights(x).flatten().astype(np.float64)


class Susceptibility:
    """
    Parent class for various dispersive susceptibility terms, parameterized by an
    anisotropic amplitude $\\sigma$. See [Material Dispersion](Materials.md#material-dispersion).
    """

    def __init__(self, sigma_diag=Vector3(), sigma_offdiag=Vector3(), sigma=None):
        """
        + **`sigma` [`number`]** — The scale factor $\\sigma$.

        You can also specify an anisotropic $\\sigma$ tensor by using the property `sigma_diag`
        which takes three numbers or a `Vector3` to give the $\\sigma_n$ tensor diagonal, and
        `sigma_offdiag` which specifies the offdiagonal elements (defaults to 0). That is,
        `sigma_diag=mp.Vector3(a, b, c)` and `sigma_offdiag=mp.Vector3(u, v, w)`
        corresponds to a $\\sigma$ tensor

        \\begin{pmatrix} a & u & v \\\\ u & b & w \\\\ v & w & c \\end{pmatrix}
        """
        self.sigma_diag = (
            Vector3(sigma, sigma, sigma) if sigma else Vector3(*sigma_diag)
        )
        self.sigma_offdiag = Vector3(*sigma_offdiag)

    def transform(self, m):
        sigma = Matrix(diag=self.sigma_diag, offdiag=self.sigma_offdiag)
        new_sigma = (m * sigma * m.transpose()) / abs(m.determinant())
        self.sigma_diag = mp.Vector3(new_sigma.c1.x, new_sigma.c2.y, new_sigma.c3.z)
        self.sigma_offdiag = mp.Vector3(new_sigma.c2.x, new_sigma.c3.x, new_sigma.c3.y)


class LorentzianSusceptibility(Susceptibility):
    """
    Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
    oscillator) form. See [Material Dispersion](Materials.md#material-dispersion), with
    the parameters (in addition to $\\sigma$):
    """

    def __init__(self, frequency=0.0, gamma=0.0, **kwargs):
        """
        + **`frequency` [`number`]** — The resonance frequency $f_n = \\omega_n / 2\\pi$.

        + **`gamma` [`number`]** — The resonance loss rate $\\gamma_n / 2\\pi$.

        Note: multiple objects with identical values for the `frequency` and `gamma` but
        different `sigma` will appear as a *single* Lorentzian susceptibility term in the
        preliminary simulation info output.
        """
        super().__init__(**kwargs)
        self.frequency = frequency
        self.gamma = gamma

    def eval_susceptibility(self, freq):
        sigma = np.expand_dims(
            Matrix(diag=self.sigma_diag, offdiag=self.sigma_offdiag), axis=0
        )
        if self.gamma == 0:
            return (
                self.frequency
                * self.frequency
                / (self.frequency * self.frequency - freq * freq)
                * sigma
            )
        else:
            return (
                self.frequency
                * self.frequency
                / (
                    self.frequency * self.frequency
                    - freq * freq
                    - 1j * self.gamma * freq
                )
                * sigma
            )


class DrudeSusceptibility(Susceptibility):
    """
    Specifies a single dispersive susceptibility of Drude form. See [Material
    Dispersion](Materials.md#material-dispersion), with the parameters (in addition to $\\sigma$):
    """

    def __init__(self, frequency=0.0, gamma=0.0, **kwargs):
        """
        + **`frequency` [`number`]** — The frequency scale factor $f_n = \\omega_n / 2\\pi$
          which multiplies $\\sigma$ (not a resonance frequency).

        + **`gamma` [`number`]** — The loss rate $\\gamma_n / 2\\pi$.
        """
        super().__init__(**kwargs)
        self.frequency = frequency
        self.gamma = gamma

    def eval_susceptibility(self, freq):
        sigma = np.expand_dims(
            Matrix(diag=self.sigma_diag, offdiag=self.sigma_offdiag), axis=0
        )
        if self.gamma == 0:
            return -self.frequency * self.frequency / (freq * (freq)) * sigma
        else:
            return (
                -self.frequency
                * self.frequency
                / (freq * (freq + 1j * self.gamma))
                * sigma
            )


class NoisyLorentzianSusceptibility(LorentzianSusceptibility):
    """
    Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
    oscillator) or Drude form. See [Material
    Dispersion](Materials.md#material-dispersion), with the same `sigma`, `frequency`, and
    `gamma` parameters, but with an additional Gaussian random noise term (uncorrelated in
    space and time, zero mean) added to the **P** damped-oscillator equation.
    """

    def __init__(self, noise_amp=0.0, **kwargs):
        """
        + **`noise_amp` [`number`]** — The noise has root-mean square amplitude σ $\\times$
          `noise_amp`.

        This is a somewhat unusual polarizable medium, a Lorentzian susceptibility with a
        random noise term added into the damped-oscillator equation at each point. This
        can be used to directly model thermal radiation in both the [far
        field](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.213905) and the
        [near field](http://math.mit.edu/~stevenj/papers/RodriguezIl11.pdf). Note, however
        that it is more efficient to [compute far-field thermal radiation using
        Kirchhoff's law](http://www.simpetus.com/projects.html#meep_thermal_radiation) of
        radiation, which states that emissivity equals absorptivity. Near-field thermal
        radiation can usually be computed more efficiently using frequency-domain methods,
        e.g. via [SCUFF-EM](https://github.com/HomerReid/scuff-em), as described e.g.
        [here](http://doi.org/10.1103/PhysRevB.92.134202) or
        [here](http://doi.org/10.1103/PhysRevB.88.054305).
        """
        super().__init__(**kwargs)
        self.noise_amp = noise_amp


class NoisyDrudeSusceptibility(DrudeSusceptibility):
    """
    Specifies a single dispersive susceptibility of Lorentzian (damped harmonic
    oscillator) or Drude form. See [Material
    Dispersion](Materials.md#material-dispersion), with the same `sigma`, `frequency`, and
    `gamma` parameters, but with an additional Gaussian random noise term (uncorrelated in
    space and time, zero mean) added to the **P** damped-oscillator equation.
    """

    def __init__(self, noise_amp=0.0, **kwargs):
        """
        + **`noise_amp` [`number`]** — The noise has root-mean square amplitude σ $\\times$
          `noise_amp`.

        This is a somewhat unusual polarizable medium, a Lorentzian susceptibility with a
        random noise term added into the damped-oscillator equation at each point. This
        can be used to directly model thermal radiation in both the [far
        field](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.213905) and the
        [near field](http://math.mit.edu/~stevenj/papers/RodriguezIl11.pdf). Note, however
        that it is more efficient to [compute far-field thermal radiation using
        Kirchhoff's law](http://www.simpetus.com/projects.html#meep_thermal_radiation) of
        radiation, which states that emissivity equals absorptivity. Near-field thermal
        radiation can usually be computed more efficiently using frequency-domain methods,
        e.g. via [SCUFF-EM](https://github.com/HomerReid/scuff-em), as described e.g.
        [here](http://doi.org/10.1103/PhysRevB.92.134202) or
        [here](http://doi.org/10.1103/PhysRevB.88.054305).
        """
        super().__init__(**kwargs)
        self.noise_amp = noise_amp


class GyrotropicLorentzianSusceptibility(LorentzianSusceptibility):
    """
    (**Experimental feature**) Specifies a single dispersive [gyrotropic
    susceptibility](Materials.md#gyrotropic-media) of [Lorentzian (damped harmonic
    oscillator) or Drude form](Materials.md#gyrotropic-drude-lorentz-model). Its
    parameters are `sigma`, `frequency`, and `gamma`, which have the [usual
    meanings](#susceptibility), and an additional 3-vector `bias`:
    """

    def __init__(self, bias=Vector3(), **kwargs):
        """
        + **`bias` [`Vector3`]** — The gyrotropy vector.  Its direction determines the
          orientation of the gyrotropic response, and the magnitude is the precession
          frequency $|\\mathbf{b}_n|/2\\pi$.
        """
        super().__init__(**kwargs)
        self.bias = bias


class GyrotropicDrudeSusceptibility(DrudeSusceptibility):
    """
    (**Experimental feature**) Specifies a single dispersive [gyrotropic
    susceptibility](Materials.md#gyrotropic-media) of [Lorentzian (damped harmonic
    oscillator) or Drude form](Materials.md#gyrotropic-drude-lorentz-model). Its
    parameters are `sigma`, `frequency`, and `gamma`, which have the [usual
    meanings](#susceptibility), and an additional 3-vector `bias`:
    """

    def __init__(self, bias=Vector3(), **kwargs):
        """
        + **`bias` [`Vector3`]** — The gyrotropy vector.  Its direction determines the
          orientation of the gyrotropic response, and the magnitude is the precession
          frequency $|\\mathbf{b}_n|/2\\pi$.
        """
        super().__init__(**kwargs)
        self.bias = bias


class GyrotropicSaturatedSusceptibility(Susceptibility):
    """
    (**Experimental feature**) Specifies a single dispersive [gyrotropic
    susceptibility](Materials.md#gyrotropic-media) governed by a [linearized
    Landau-Lifshitz-Gilbert
    equation](Materials.md#gyrotropic-saturated-dipole-linearized-landau-lifshitz-gilbert-model).
    This class takes parameters `sigma`, `frequency`, and `gamma`, whose meanings are
    different from the Lorentzian and Drude case. It also takes a 3-vector `bias`
    parameter and an `alpha` parameter:
    """

    def __init__(self, bias=Vector3(), frequency=0.0, gamma=0.0, alpha=0.0, **kwargs):
        """
        + **`sigma` [`number`]** — The coupling factor $\\sigma_n / 2\\pi$ between the
          polarization and the driving field. In [magnetic
          ferrites](https://en.wikipedia.org/wiki/Ferrite_(magnet)), this is the Larmor
          precession frequency at the saturation field.

        + **`frequency` [`number`]** — The [Larmor
          precession](https://en.wikipedia.org/wiki/Larmor_precession) frequency,
          $f_n = \\omega_n / 2\\pi$.

        + **`gamma` [`number`]** — The loss rate $\\gamma_n / 2\\pi$ in the off-diagonal
          response.

        + **`alpha` [`number`]** — The loss factor $\\alpha_n$ in the diagonal response.
          Note that this parameter is dimensionless and contains no 2π factor.

        + **`bias` [`Vector3`]** — Vector specifying the orientation of the gyrotropic
          response. Unlike the similarly-named `bias` parameter for the [gyrotropic
          Lorentzian/Drude
          susceptibilities](#gyrotropiclorentziansusceptibility-or-gyrotropicdrudesusceptibility),
          the magnitude is ignored; instead, the relevant precession frequencies are
          determined by the `sigma` and `frequency` parameters.
        """
        super().__init__(**kwargs)
        self.frequency = frequency
        self.gamma = gamma
        self.bias = bias
        self.alpha = alpha


class MultilevelAtom(Susceptibility):
    """
    Specifies a multievel atomic susceptibility for modeling saturable gain and
    absorption. This is a subclass of `E_susceptibilities` which contains two objects: (1)
    `transitions`: a list of atomic `Transition`s (defined below), and (2)
    `initial_populations`: a list of numbers defining the initial population of each
    atomic level. See [Materials/Saturable Gain and
    Absorption](Materials.md#saturable-gain-and-absorption).
    """

    def __init__(self, initial_populations=None, transitions=None, **kwargs):
        super().__init__(**kwargs)
        self.initial_populations = initial_populations or []
        self.transitions = transitions or []


class Transition:
    """ """

    def __init__(
        self,
        from_level,
        to_level,
        transition_rate=0,
        frequency=0,
        sigma_diag=Vector3(1, 1, 1),
        gamma=0,
        pumping_rate=0,
    ):
        """
        Construct a `Transition`.

        + **`frequency` [`number`]** — The radiative transition frequency $f = \\omega / 2\\pi$.

        + **`gamma` [`number`]** — The loss rate $\\gamma = \\gamma / 2\\pi$.

        + **`sigma_diag` [`Vector3`]** — The per-polarization coupling strength $\\sigma$.

        + **`from_level` [`number`]** — The atomic level from which the transition occurs.

        + **`to_level` [`number`]** — The atomic level to which the transition occurs.

        + **`transition_rate` [`number`]** — The non-radiative transition rate
          $f = \\omega / 2\\pi$. Default is 0.

        + **`pumping_rate` [`number`]** — The pumping rate $f = \\omega / 2\\pi$. Default is 0.
        """
        self.from_level = check_nonnegative("from_level", from_level)
        self.to_level = check_nonnegative("to_level", to_level)
        self.transition_rate = transition_rate
        self.frequency = frequency
        self.sigma_diag = sigma_diag
        self.gamma = gamma
        self.pumping_rate = pumping_rate


class GeometricObject:
    """
    This class, and its descendants, are used to specify the solid geometric objects that
    form the dielectric structure being simulated.

    In a 2d calculation, only the intersections of the objects with the $xy$ plane are
    considered.

    **Geometry Utilities**

    See the [MPB documentation](https://mpb.readthedocs.io/en/latest/Python_User_Interface/#geometry-utilities)
    for utility functions to help manipulate geometric objects.

    **Examples**

    These are some examples of geometric objects created using some `GeometricObject`
    subclasses:

    ```python
    # A cylinder of infinite radius and height 0.25 pointing along the x axis,
    # centered at the origin:
    cyl = mp.Cylinder(center=mp.Vector3(0,0,0), height=0.25, radius=mp.inf,
                    axis=mp.Vector3(1,0,0), material=mp.Medium(index=3.5))
    ```

    ```python
    # An ellipsoid with its long axis pointing along (1,1,1), centered on
    # the origin (the other two axes are orthogonal and have equal semi-axis lengths):
    ell = mp.Ellipsoid(center=mp.Vector3(0,0,0), size=mp.Vector3(0.8,0.2,0.2),
                    e1=Vector3(1,1,1), e2=Vector3(0,1,-1), e3=Vector3(-2,1,1),
                    material=mp.Medium(epsilon=13))
    ```

    ```python
    # A unit cube of material metal with a spherical air hole of radius 0.2 at
    # its center, the whole thing centered at (1,2,3):
    geometry=[mp.Block(center=Vector3(1,2,3), size=Vector3(1,1,1), material=mp.metal),
            mp.Sphere(center=Vector3(1,2,3), radius=0.2, material=mp.air)]
    ```

    ```python
    # A hexagonal prism defined by six vertices centered on the origin
    # of material crystalline silicon (from the materials library)
    vertices = [mp.Vector3(-1,0),
                mp.Vector3(-0.5,math.sqrt(3)/2),
                mp.Vector3(0.5,math.sqrt(3)/2),
                mp.Vector3(1,0),
                mp.Vector3(0.5,-math.sqrt(3)/2),
                mp.Vector3(-0.5,-math.sqrt(3)/2)]

    geometry = [mp.Prism(vertices, height=1.5, center=mp.Vector3(), material=cSi)]
    ```
    """

    def __init__(self, material=Medium(), center=Vector3(), epsilon_func=None):
        """
        Construct a `GeometricObject`.

        + **`material` [`Medium` class or function ]** — The material that the object is
          made of (usually some sort of dielectric). Uses default `Medium`. If a function
          is supplied, it must take one argument and return a Python `Medium`.

        + **`epsilon_func` [ function ]** — A function that takes one argument (a
          `Vector3`) and returns the dielectric constant at that point. Can be used
          instead of `material`. Default is `None`.

        + **`center` [`Vector3`]** — Center point of the object. Defaults to `(0,0,0)`.

        One normally does not create objects of type `GeometricObject` directly, however;
        instead, you use one of the following subclasses. Recall that subclasses inherit
        the properties of their superclass, so these subclasses automatically have the
        `material` and `center` properties and can be specified in a subclass's
        constructor via keyword arguments.
        """
        if type(material) is not Medium and callable(material):
            init_do_averaging(material)
            material.eps = False
        elif epsilon_func:
            init_do_averaging(epsilon_func)
            epsilon_func.eps = True
            material = epsilon_func

        self.material = material
        self.center = Vector3(*center)

    def __contains__(self, point):
        return mp.is_point_in_object(Vector3(*point), self)

    def __add__(self, vec):
        return self.shift(Vector3(*vec))

    def __radd__(self, vec):
        return self.shift(Vector3(*vec))

    def __iadd__(self, vec):
        self.center += Vector3(*vec)
        return self

    def shift(self, vec):
        """
        Shifts the object's `center` by `vec` (`Vector3`), returning a new object.
        This can also be accomplished via the `+` operator:

        ```python
        geometric_obj + Vector3(10,10,10)
        ```

        Using `+=` will shift the object in place.
        """
        c = deepcopy(self)
        c.center += Vector3(*vec)
        return c

    def info(self, indent_by=0):
        """
        Displays all properties and current values of a `GeometricObject`, indented by
        `indent_by` spaces (default is 0).
        """
        mp.display_geometric_object_info(indent_by, self)


class Sphere(GeometricObject):
    """
    Represents a sphere.

    **Properties:**

    + **`radius` [`number`]** — Radius of the sphere. No default value.
    """

    def __init__(self, radius, **kwargs):
        """Constructs a `Sphere`"""
        self.radius = float(radius)
        super().__init__(**kwargs)

    @property
    def radius(self):
        return self._radius

    @radius.setter
    def radius(self, val):
        self._radius = check_nonnegative("Sphere.radius", val)


class Cylinder(GeometricObject):
    """
    A cylinder, with circular cross-section and finite height.

    **Properties:**

    + **`radius` [`number`]** — Radius of the cylinder's cross-section. No default value.

    + **`height` [`number`]** — Length of the cylinder along its axis. No default value.

    + **`axis` [`Vector3`]** — Direction of the cylinder's axis; the length of this vector
      is ignored. Defaults to `Vector3(x=0, y=0, z=1)`.
    """

    def __init__(self, radius, axis=Vector3(0, 0, 1), height=1e20, **kwargs):
        """
        Constructs a `Cylinder`.
        """
        self.axis = Vector3(*axis)
        self.radius = float(radius)
        self.height = float(height)
        super().__init__(**kwargs)

    @property
    def radius(self):
        return self._radius

    @property
    def height(self):
        return self._height

    @radius.setter
    def radius(self, val):
        self._radius = check_nonnegative("Cylinder.radius", val)

    @height.setter
    def height(self, val):
        self._height = check_nonnegative("Cylinder.height", val)


class Wedge(Cylinder):
    """
    Represents a cylindrical wedge.
    """

    def __init__(
        self, radius, wedge_angle=2 * math.pi, wedge_start=Vector3(1, 0, 0), **kwargs
    ):
        """
        Constructs a `Wedge`.
        """
        self.wedge_angle = wedge_angle
        self.wedge_start = Vector3(*wedge_start)
        super().__init__(radius, **kwargs)


class Cone(Cylinder):
    """
    A cone, or possibly a truncated cone. This is actually a subclass of `Cylinder`, and
    inherits all of the same properties, with one additional property. The radius of the
    base of the cone is given by the `radius` property inherited from `Cylinder`, while
    the radius of the tip is given by the new property, `radius2`. The `center` of a cone
    is halfway between the two circular ends.
    """

    def __init__(self, radius, radius2=0, **kwargs):
        """
        Construct a `Cone`.

        **`radius2` [`number`]**
        Radius of the tip of the cone (i.e. the end of the cone pointed to by the `axis` vector). Defaults to zero (a "sharp" cone).
        """
        self.radius2 = radius2
        super().__init__(radius, **kwargs)


class Block(GeometricObject):
    """
    A parallelepiped (i.e., a brick, possibly with non-orthogonal axes).
    """

    def __init__(
        self,
        size,
        e1=Vector3(1, 0, 0),
        e2=Vector3(0, 1, 0),
        e3=Vector3(0, 0, 1),
        **kwargs,
    ):
        """
        Construct a `Block`.

        + **`size` [`Vector3`]** — The lengths of the block edges along each of its three
          axes. Not really a 3-vector, but it has three components, each of which should
          be nonzero. No default value.

        + **`e1`, `e2`, `e3` [`Vector3`]** — The directions of the axes of the block; the
          lengths of these vectors are ignored. Must be linearly independent. They default
          to the three lattice directions.
        """

        self.size = Vector3(*size)
        self.e1 = Vector3(*e1)
        self.e2 = Vector3(*e2)
        self.e3 = Vector3(*e3)
        super().__init__(**kwargs)


class Ellipsoid(Block):
    """
    An ellipsoid. This is actually a subclass of `Block`, and inherits all the same
    properties, but defines an ellipsoid inscribed inside the block.
    """

    def __init__(self, **kwargs):
        """
        Construct an `Ellipsoid`.
        """
        super().__init__(**kwargs)


class Prism(GeometricObject):
    """
    Polygonal prism type.
    """

    def __init__(
        self,
        vertices,
        height,
        axis=Vector3(z=1),
        center=None,
        sidewall_angle=0,
        **kwargs,
    ):
        """
        Construct a `Prism`.

        + **`vertices` [list of `Vector3`]** — The vertices that make up the prism. They
          must lie in a plane that's perpendicular to the `axis`. Note that infinite
          lengths are not supported. To simulate infinite geometry, just extend the edge
          of the prism beyond the cell.

        + **`height` [`number`]** — The prism thickness, extruded in the direction of
          `axis`. `mp.inf` can be used for infinite height. No default value.

        + **`axis` [`Vector3`]** — The axis perpendicular to the prism. Defaults to
          `Vector3(0,0,1)`.

        + **`center` [`Vector3`]** — If `center` is not specified, then the coordinates of
          the `vertices` define the *bottom* of the prism with the top of the prism being
          at the same coordinates shifted by `height*axis`. If `center` is specified, then
          `center` is the coordinates of the
          [centroid](https://en.wikipedia.org/wiki/Centroid) of all the vertices (top and
          bottom) of the resulting 3d prism so that the coordinates of the `vertices` are
          shifted accordingly.

        + **`sidewall_angle` [`number`]** — The sidewall angle of the prism in units of
          radians. Default is 0.
        """

        centroid = sum(vertices, Vector3(0)) * (
            1.0 / len(vertices)
        )  # centroid of floor polygon
        original_center = (
            centroid + (0.5 * height) * axis
        )  # center as computed from vertices, height, axis
        if center is not None and len(vertices):
            center = Vector3(*center)
            # translate vertices to center prism at requested center
            shift = center - original_center
            vertices = list(map(lambda v: v + shift, vertices))
        else:
            center = original_center
        self.vertices = vertices
        self.height = height
        self.axis = axis
        self.sidewall_angle = sidewall_angle

        super().__init__(center=center, **kwargs)


class Matrix:
    """
    The `Matrix` class represents a 3x3 matrix with c1, c2, and c3 as its columns.

    ```python
    m.transpose()
    m.getH() or m.H
    m.determinant()
    m.inverse()
    ```

    Return the transpose, adjoint (conjugate transpose), determinant, or inverse of the
    given matrix.

    ```python
    m1 + m2
    m1 - m2
    m1 * m2
    ```

    Return the sum, difference, or product of the given matrices.

    ```python
    v * m
    m * v
    ```

    Returns the `Vector3` product of the matrix `m` by the vector `v`, with the vector
    multiplied on the left or the right respectively.

    ```python
    s * m
    m * s
    ```

    Scales the matrix `m` by the number `s`.
    """

    def __init__(
        self,
        c1=Vector3(),
        c2=Vector3(),
        c3=Vector3(),
        diag=Vector3(),
        offdiag=Vector3(),
    ):
        """
        Constructs a `Matrix`.
        """
        self.c1 = Vector3(*c1)
        self.c2 = Vector3(*c2)
        self.c3 = Vector3(*c3)
        if np.all(c1 == c2) and np.all(c2 == c3) and np.all(c3 == Vector3()):
            self.c1 = Vector3(diag[0], offdiag[0], offdiag[1])
            self.c2 = Vector3(np.conj(offdiag[0]), diag[1], offdiag[2])
            self.c3 = Vector3(np.conj(offdiag[1]), np.conj(offdiag[2]), diag[2])

    def __getitem__(self, i):
        return self.row(i)

    def __mul__(self, m):
        if type(m) is Matrix:
            return self.mm_mult(m)
        elif type(m) is Vector3:
            return self.mv_mult(m)
        elif isinstance(m, Number):
            return self.scale(m)
        else:
            raise TypeError(f"No operation known for 'Matrix * {type(m)}'")

    def __rmul__(self, left_arg):
        if isinstance(left_arg, Number):
            return self.scale(left_arg)
        else:
            raise TypeError(f"No operation known for 'Matrix * {type(left_arg)}'")

    def __truediv__(self, scalar):
        return Matrix(self.c1 / scalar, self.c2 / scalar, self.c3 / scalar)

    def __add__(self, m):
        return Matrix(self.c1 + m.c1, self.c2 + m.c2, self.c3 + m.c3)

    def __sub__(self, m):
        return Matrix(self.c1 - m.c1, self.c2 - m.c2, self.c3 - m.c3)

    def __repr__(self):
        r0 = self.row(0)
        r1 = self.row(1)
        r2 = self.row(2)
        return f"<<{r0[0]} {r0[1]} {r0[2]}>\n <{r1[0]} {r1[1]} {r1[2]}>\n <{r2[0]} {r2[1]} {r2[2]}>>"

    def __array__(self):
        return np.array(
            [self.row(0).__array__(), self.row(1).__array__(), self.row(2).__array__()]
        )

    def row(self, i):
        return Vector3(self.c1[i], self.c2[i], self.c3[i])

    def mm_mult(self, m):
        c1 = Vector3(
            self.row(0).dot(m.c1), self.row(1).dot(m.c1), self.row(2).dot(m.c1)
        )
        c2 = Vector3(
            self.row(0).dot(m.c2), self.row(1).dot(m.c2), self.row(2).dot(m.c2)
        )
        c3 = Vector3(
            self.row(0).dot(m.c3), self.row(1).dot(m.c3), self.row(2).dot(m.c3)
        )

        return Matrix(c1, c2, c3)

    def mv_mult(self, v):
        return Vector3(*[self.row(i).dot(Vector3(*v)) for i in range(3)])

    def scale(self, s):
        return Matrix(self.c1.scale(s), self.c2.scale(s), self.c3.scale(s))

    def determinant(self):
        sum1 = sum(
            [
                functools.reduce(operator.mul, [self[x][x] for x in range(3)]),
                functools.reduce(operator.mul, [self[0][1], self[1][2], self[2][0]]),
                functools.reduce(operator.mul, [self[1][0], self[2][1], self[0][2]]),
            ]
        )
        sum2 = sum(
            [
                functools.reduce(operator.mul, [self[0][2], self[1][1], self[2][0]]),
                functools.reduce(operator.mul, [self[0][1], self[1][0], self[2][2]]),
                functools.reduce(operator.mul, [self[1][2], self[2][1], self[0][0]]),
            ]
        )
        return sum1 - sum2

    def conj(self):
        return Matrix(self.c1.conj(), self.c2.conj(), self.c3.conj())

    def transpose(self):
        return Matrix(self.row(0), self.row(1), self.row(2))

    def getH(self):
        return self.transpose().conj()

    def inverse(self):
        v1x = self[1][1] * self[2][2] - self[1][2] * self[2][1]
        v1y = self[1][2] * self[2][0] - self[1][0] * self[2][2]
        v1z = self[1][0] * self[2][1] - self[1][1] * self[2][0]
        v1 = mp.Vector3(v1x, v1y, v1z)

        v2x = self[2][1] * self[0][2] - self[0][1] * self[2][2]
        v2y = self[0][0] * self[2][2] - self[0][2] * self[2][0]
        v2z = self[0][1] * self[2][0] - self[0][0] * self[2][1]
        v2 = mp.Vector3(v2x, v2y, v2z)

        v3x = self[0][1] * self[1][2] - self[1][1] * self[0][2]
        v3y = self[1][0] * self[0][2] - self[0][0] * self[1][2]
        v3z = self[1][1] * self[0][0] - self[1][0] * self[0][1]
        v3 = mp.Vector3(v3x, v3y, v3z)

        m = Matrix(v1, v2, v3)

        return m.scale(1 / self.determinant())

    H = property(getH, None)


class Lattice:
    def __init__(
        self,
        size=Vector3(1, 1, 1),
        basis_size=Vector3(1, 1, 1),
        basis1=Vector3(1, 0, 0),
        basis2=Vector3(0, 1, 0),
        basis3=Vector3(0, 0, 1),
    ):

        self.size = Vector3(*size)
        self.basis_size = Vector3(*basis_size)
        self.basis1 = Vector3(*basis1)
        self.basis2 = Vector3(*basis2)
        self.basis3 = Vector3(*basis3)

    @property
    def basis1(self):
        return self._basis1

    @basis1.setter
    def basis1(self, val):
        self._basis1 = val.unit()

    @property
    def basis2(self):
        return self._basis2

    @basis2.setter
    def basis2(self, val):
        self._basis2 = val.unit()

    @property
    def basis3(self):
        return self._basis3

    @basis3.setter
    def basis3(self, val):
        self._basis3 = val.unit()

    @property
    def b1(self):
        return self.basis1.scale(self.basis_size.x)

    @property
    def b2(self):
        return self.basis2.scale(self.basis_size.y)

    @property
    def b3(self):
        return self.basis3.scale(self.basis_size.z)

    @property
    def basis(self):
        B = Matrix(self.b1, self.b2, self.b3)

        if B.determinant() == 0:
            raise ValueError("Lattice basis vectors must be linearly independent.")

        return B

    @property
    def metric(self):
        B = self.basis
        return B.transpose() * B


def lattice_to_cartesian(x, lat):
    if isinstance(x, Vector3):
        return lat.basis * x

    return (lat.basis * x) * lat.basis.inverse()


def cartesian_to_lattice(x, lat):
    if isinstance(x, Vector3):
        return lat.basis.inverse() * x

    return (lat.basis.inverse() * x) * lat.basis


def reciprocal_to_cartesian(x, lat):
    s = Vector3(*[1 if v == 0 else v for v in lat.size])

    m = Matrix(Vector3(s.x), Vector3(y=s.y), Vector3(z=s.z))
    Rst = (lat.basis * m).transpose()

    return Rst.inverse() * x if isinstance(x, Vector3) else (Rst.inverse() * x) * Rst


def cartesian_to_reciprocal(x, lat):
    s = Vector3(*[1 if v == 0 else v for v in lat.size])

    m = Matrix(Vector3(s.x), Vector3(y=s.y), Vector3(z=s.z))
    Rst = (lat.basis * m).transpose()

    return Rst * x if isinstance(x, Vector3) else (Rst * x) * Rst.inverse()


def lattice_to_reciprocal(x, lat):
    return cartesian_to_reciprocal(lattice_to_cartesian(x, lat), lat)


def reciprocal_to_lattice(x, lat):
    return cartesian_to_lattice(reciprocal_to_cartesian(x, lat), lat)


def geometric_object_duplicates(shift_vector, min_multiple, max_multiple, go):

    shift_vector = Vector3(*shift_vector)

    def _dup(min_multiple, lst):
        if min_multiple > max_multiple:
            return lst
        shifted = go.shift(shift_vector.scale(min_multiple))
        return _dup(min_multiple + 1, [shifted] + lst)

    return _dup(min_multiple, [])


def geometric_objects_duplicates(shift_vector, min_multiple, max_multiple, go_list):
    dups = []
    shift_vector = Vector3(*shift_vector)
    for go in go_list:
        dups += geometric_object_duplicates(
            shift_vector, min_multiple, max_multiple, go
        )
    return dups


def geometric_objects_lattice_duplicates(lat, go_list, *usize):
    def lat_to_lattice(v):
        return cartesian_to_lattice(lat.basis * v, lat)

    u1 = usize[0] if usize else 1
    u2 = usize[1] if len(usize) >= 2 else 1
    u3 = usize[2] if len(usize) >= 3 else 1
    s = lat.size

    b1 = lat_to_lattice(mp.Vector3(u1))
    b2 = lat_to_lattice(mp.Vector3(0, u2, 0))
    b3 = lat_to_lattice(mp.Vector3(0, 0, u3))

    n1 = math.ceil((s.x if s.x else 1e-20) / u1)
    n2 = math.ceil((s.y if s.y else 1e-20) / u2)
    n3 = math.ceil((s.z if s.z else 1e-20) / u3)

    min3 = -math.floor((n3 - 1) / 2)
    max3 = math.ceil((n3 - 1) / 2)
    d3 = geometric_objects_duplicates(b3, int(min3), int(max3), go_list)

    min2 = -math.floor((n2 - 1) / 2)
    max2 = math.ceil((n2 - 1) / 2)
    d2 = geometric_objects_duplicates(b2, int(min2), int(max2), d3)

    min1 = -math.floor((n1 - 1) / 2)
    max1 = math.ceil((n1 - 1) / 2)

    return geometric_objects_duplicates(b1, int(min1), int(max1), d2)


# Return a 'memoized' version of the function f, which caches its
# arguments and return values so as never to compute the same thing twice.
def memoize(f):
    f_memo_tab = {}

    def _mem(y=None):
        tab_val = f_memo_tab.get(y, None)
        if tab_val:
            return tab_val

        fy = f(y)
        f_memo_tab[y] = fy
        return fy

    return _mem


# Find a root by Newton's method with bounds and bisection,
# given a function f that returns a pair of (value . derivative)
def find_root_deriv(f, tol, x_min, x_max, x_guess=None):
    # Some trickiness: we only need to evaluate the function at x_min and
    # x_max if a Newton step fails, and even then only if we haven't already
    # bracketed the root, so do this via lazy evaluation.
    f_memo = memoize(f)

    def lazy(x):
        return x if isinstance(x, numbers.Number) else x()

    def pick_bound(which):
        def _pb():
            fmin_tup = f_memo(x_min)
            fmax_tup = f_memo(x_max)
            fmin = fmin_tup[0]
            fmax = fmax_tup[0]

            if which(fmin):
                return x_min
            elif which(fmax):
                return x_max
            else:
                raise ValueError("failed to bracket the root in find_root_deriv")

        return _pb

    def in_bounds(x, f, df, a, b):
        return (f - (df * (x - a))) * (f - (df * (x - b))) < 0

    def newton(x, a, b, dx):
        if abs(dx) < abs(tol * x):
            return x

        fx_tup = f_memo(x)
        f = fx_tup[0]
        df = fx_tup[1]

        if f == 0:
            return x

        a_prime = x if f < 0 else a
        b_prime = x if f > 0 else b

        if (
            dx != x_max - x_min
            and dx * (f / df) < 0
            and f_memo(lazy(a_prime))[0] * f_memo(lazy(b_prime))[0] > 0
        ):
            raise ValueError("failed to bracket the root in find_root_deriv")

        if isinstance(a, numbers.Number) and isinstance(b, numbers.Number):
            is_in_bounds = in_bounds(x, f, df, a, b)
        else:
            is_in_bounds = in_bounds(x, f, df, x_min, x_max)

        if is_in_bounds:
            return newton(x - (f / df), a_prime, b_prime, f / df)

        av = lazy(a)
        bv = lazy(b)
        dx_prime = 0.5 * (bv - av)
        a_pp = av if a == a_prime else a_prime
        b_pp = bv if b == b_prime else b_prime

        return newton((av + bv) * 0.5, a_pp, b_pp, dx_prime)

    if x_guess is None:
        x_guess = (x_min + x_max) * 0.5

    return newton(
        x_guess,
        pick_bound(lambda aa: aa < 0),
        pick_bound(lambda aa: aa > 0),
        x_max - x_min,
    )


def get_rotation_matrix(axis, theta):
    """
    Like `Vector3.rotate`, except returns the (unitary) rotation matrix that performs the
    given rotation. i.e., `get_rotation_matrix(axis, theta) * v` produces the same result
    as `v.rotate(axis, theta)`.

    + `axis` [`Vector3`] — The vector around which the rotation is applied in the right-hand direction.

    + `theta` [`number`] — The rotation angle (in radians).
    """
    return Matrix(
        Vector3(x=1).rotate(axis, theta),
        Vector3(y=1).rotate(axis, theta),
        Vector3(z=1).rotate(axis, theta),
    )