1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
import meep as mp
try:
import meep.adjoint as mpa
except:
import adjoint as mpa
import unittest
from enum import Enum
import numpy as np
from autograd import numpy as npa
from autograd import tensor_jacobian_product
from utils import ApproxComparisonTestCase
import parameterized
rng = np.random.RandomState(2)
resolution = 20
dimensions = mp.CYLINDRICAL
Si = mp.Medium(index=3.4)
SiO2 = mp.Medium(index=1.44)
sr = 6
sz = 6
cell_size = mp.Vector3(sr, 0, sz)
dpml = 1.0
boundary_layers = [mp.PML(thickness=dpml)]
design_region_resolution = int(2 * resolution)
design_r = 5
design_z = 2
Nr, Nz = int(design_r * design_region_resolution), int(
design_z * design_region_resolution
)
fcen = 1 / 1.55
width = 0.2
fwidth = width * fcen
source_center = [design_r / 2, 0, -(sz / 2 - dpml + design_z / 2) / 2]
source_size = mp.Vector3(design_r, 0, 0)
src = mp.GaussianSource(frequency=fcen, fwidth=fwidth)
source = [mp.Source(src, component=mp.Er, center=source_center, size=source_size)]
## random design region
p = 0.5 * rng.rand(Nr * Nz)
## random epsilon perturbation for design region
deps = 1e-5
dp = deps * rng.rand(Nr * Nz)
def forward_simulation(design_params, m, far_x):
matgrid = mp.MaterialGrid(
mp.Vector3(Nr, 0, Nz), SiO2, Si, weights=design_params.reshape(Nr, 1, Nz)
)
geometry = [
mp.Block(
center=mp.Vector3(design_r / 2, 0, 0),
size=mp.Vector3(design_r, 0, design_z),
material=matgrid,
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
sources=source,
geometry=geometry,
dimensions=dimensions,
m=m,
)
frequencies = [fcen]
mode = sim.add_near2far(
frequencies,
mp.Near2FarRegion(
center=mp.Vector3(design_r / 2, 0, (sz / 2 - dpml + design_z / 2) / 2),
size=mp.Vector3(design_r, 0, 0),
weight=+1,
),
)
sim.run(until_after_sources=1200)
Er = sim.get_farfield(mode, far_x[0])
sim.reset_meep()
return abs(Er[0]) ** 2
def adjoint_solver(design_params, m, far_x):
design_variables = mp.MaterialGrid(mp.Vector3(Nr, 0, Nz), SiO2, Si)
design_region = mpa.DesignRegion(
design_variables,
volume=mp.Volume(
center=mp.Vector3(design_r / 2, 0, 0),
size=mp.Vector3(design_r, 0, design_z),
),
)
geometry = [
mp.Block(
center=design_region.center,
size=design_region.size,
material=design_variables,
)
]
sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=boundary_layers,
geometry=geometry,
sources=source,
resolution=resolution,
dimensions=dimensions,
m=m,
)
NearRegions = [
mp.Near2FarRegion(
center=mp.Vector3(design_r / 2, 0, (sz / 2 - dpml + design_z / 2) / 2),
size=mp.Vector3(design_r, 0, 0),
weight=+1,
)
]
FarFields = mpa.Near2FarFields(sim, NearRegions, far_x)
ob_list = [FarFields]
def J(alpha):
return npa.abs(alpha[0, 0, 0]) ** 2
opt = mpa.OptimizationProblem(
simulation=sim,
objective_functions=J,
objective_arguments=ob_list,
design_regions=[design_region],
fcen=fcen,
df=0,
nf=1,
maximum_run_time=1200,
)
f, dJ_du = opt([design_params])
sim.reset_meep()
return f, dJ_du
class TestAdjointSolver(ApproxComparisonTestCase):
@parameterized.parameterized.expand(
[
(0, [mp.Vector3(5, 0, 20)]),
(0, [mp.Vector3(4, 0, 28)]),
(-1, [mp.Vector3(5, 0, 20)]),
(1.2, [mp.Vector3(5, 0, 20)]),
]
)
def test_adjoint_solver_cyl_n2f_fields(self, m, far_x):
print("*** TESTING CYLINDRICAL Near2Far ADJOINT FEATURES ***")
print(f"Current test: m={m}, far_x={far_x}")
adjsol_obj, adjsol_grad = adjoint_solver(p, m, far_x)
## compute unperturbed S12
S12_unperturbed = forward_simulation(p, m, far_x)
## compare objective results
print(
f"|Er|^2 -- adjoint solver: {adjsol_obj}, traditional simulation: {S12_unperturbed}"
)
self.assertClose(adjsol_obj, S12_unperturbed, epsilon=1e-3)
## compute perturbed S12
S12_perturbed = forward_simulation(p + dp, m, far_x)
## compare gradients
if adjsol_grad.ndim < 2:
adjsol_grad = np.expand_dims(adjsol_grad, axis=1)
adj_scale = (dp[None, :] @ adjsol_grad).flatten()
fd_grad = S12_perturbed - S12_unperturbed
print(f"Directional derivative -- adjoint solver: {adj_scale}, FD: {fd_grad}")
tol = 0.2 if mp.is_single_precision() else 0.1
self.assertClose(adj_scale, fd_grad, epsilon=tol)
if __name__ == "__main__":
unittest.main()
|