File: test_adjoint_cyl.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (188 lines) | stat: -rw-r--r-- 4,983 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import meep as mp

try:
    import meep.adjoint as mpa
except:
    import adjoint as mpa

import unittest
from enum import Enum

import numpy as np
from autograd import numpy as npa
from autograd import tensor_jacobian_product
from utils import ApproxComparisonTestCase
import parameterized

rng = np.random.RandomState(2)
resolution = 20
dimensions = mp.CYLINDRICAL
Si = mp.Medium(index=3.4)
SiO2 = mp.Medium(index=1.44)

sr = 6
sz = 6
cell_size = mp.Vector3(sr, 0, sz)
dpml = 1.0
boundary_layers = [mp.PML(thickness=dpml)]

design_region_resolution = int(2 * resolution)
design_r = 5
design_z = 2
Nr, Nz = int(design_r * design_region_resolution), int(
    design_z * design_region_resolution
)

fcen = 1 / 1.55
width = 0.2
fwidth = width * fcen
source_center = [design_r / 2, 0, -(sz / 2 - dpml + design_z / 2) / 2]
source_size = mp.Vector3(design_r, 0, 0)
src = mp.GaussianSource(frequency=fcen, fwidth=fwidth)
source = [mp.Source(src, component=mp.Er, center=source_center, size=source_size)]

## random design region
p = 0.5 * rng.rand(Nr * Nz)
## random epsilon perturbation for design region
deps = 1e-5
dp = deps * rng.rand(Nr * Nz)


def forward_simulation(design_params, m, far_x):
    matgrid = mp.MaterialGrid(
        mp.Vector3(Nr, 0, Nz), SiO2, Si, weights=design_params.reshape(Nr, 1, Nz)
    )

    geometry = [
        mp.Block(
            center=mp.Vector3(design_r / 2, 0, 0),
            size=mp.Vector3(design_r, 0, design_z),
            material=matgrid,
        )
    ]

    sim = mp.Simulation(
        resolution=resolution,
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        sources=source,
        geometry=geometry,
        dimensions=dimensions,
        m=m,
    )

    frequencies = [fcen]

    mode = sim.add_near2far(
        frequencies,
        mp.Near2FarRegion(
            center=mp.Vector3(design_r / 2, 0, (sz / 2 - dpml + design_z / 2) / 2),
            size=mp.Vector3(design_r, 0, 0),
            weight=+1,
        ),
    )

    sim.run(until_after_sources=1200)
    Er = sim.get_farfield(mode, far_x[0])
    sim.reset_meep()

    return abs(Er[0]) ** 2


def adjoint_solver(design_params, m, far_x):

    design_variables = mp.MaterialGrid(mp.Vector3(Nr, 0, Nz), SiO2, Si)
    design_region = mpa.DesignRegion(
        design_variables,
        volume=mp.Volume(
            center=mp.Vector3(design_r / 2, 0, 0),
            size=mp.Vector3(design_r, 0, design_z),
        ),
    )
    geometry = [
        mp.Block(
            center=design_region.center,
            size=design_region.size,
            material=design_variables,
        )
    ]

    sim = mp.Simulation(
        cell_size=cell_size,
        boundary_layers=boundary_layers,
        geometry=geometry,
        sources=source,
        resolution=resolution,
        dimensions=dimensions,
        m=m,
    )

    NearRegions = [
        mp.Near2FarRegion(
            center=mp.Vector3(design_r / 2, 0, (sz / 2 - dpml + design_z / 2) / 2),
            size=mp.Vector3(design_r, 0, 0),
            weight=+1,
        )
    ]
    FarFields = mpa.Near2FarFields(sim, NearRegions, far_x)
    ob_list = [FarFields]

    def J(alpha):
        return npa.abs(alpha[0, 0, 0]) ** 2

    opt = mpa.OptimizationProblem(
        simulation=sim,
        objective_functions=J,
        objective_arguments=ob_list,
        design_regions=[design_region],
        fcen=fcen,
        df=0,
        nf=1,
        maximum_run_time=1200,
    )

    f, dJ_du = opt([design_params])
    sim.reset_meep()

    return f, dJ_du


class TestAdjointSolver(ApproxComparisonTestCase):
    @parameterized.parameterized.expand(
        [
            (0, [mp.Vector3(5, 0, 20)]),
            (0, [mp.Vector3(4, 0, 28)]),
            (-1, [mp.Vector3(5, 0, 20)]),
            (1.2, [mp.Vector3(5, 0, 20)]),
        ]
    )
    def test_adjoint_solver_cyl_n2f_fields(self, m, far_x):
        print("*** TESTING CYLINDRICAL Near2Far ADJOINT FEATURES ***")
        print(f"Current test: m={m}, far_x={far_x}")
        adjsol_obj, adjsol_grad = adjoint_solver(p, m, far_x)

        ## compute unperturbed S12
        S12_unperturbed = forward_simulation(p, m, far_x)

        ## compare objective results
        print(
            f"|Er|^2 -- adjoint solver: {adjsol_obj}, traditional simulation: {S12_unperturbed}"
        )

        self.assertClose(adjsol_obj, S12_unperturbed, epsilon=1e-3)

        ## compute perturbed S12
        S12_perturbed = forward_simulation(p + dp, m, far_x)

        ## compare gradients
        if adjsol_grad.ndim < 2:
            adjsol_grad = np.expand_dims(adjsol_grad, axis=1)
        adj_scale = (dp[None, :] @ adjsol_grad).flatten()
        fd_grad = S12_perturbed - S12_unperturbed
        print(f"Directional derivative -- adjoint solver: {adj_scale}, FD: {fd_grad}")
        tol = 0.2 if mp.is_single_precision() else 0.1
        self.assertClose(adj_scale, fd_grad, epsilon=tol)


if __name__ == "__main__":
    unittest.main()