File: test_binary_grating.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (338 lines) | stat: -rw-r--r-- 10,985 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import cmath
import math
import unittest

import numpy as np
import parameterized

import meep as mp


class TestEigCoeffs(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.resolution = 30  # pixels/μm

        cls.dpml = 1.0  # PML thickness
        cls.dsub = 1.0  # substrate thickness
        cls.dpad = 1.0  # padding thickness between grating and PML
        cls.gp = 6.0  # grating period
        cls.gh = 0.5  # grating height
        cls.gdc = 0.5  # grating duty cycle

        cls.sx = cls.dpml + cls.dsub + cls.gh + cls.dpad + cls.dpml
        cls.sy = cls.gp

        cls.cell_size = mp.Vector3(cls.sx, cls.sy, 0)

        # replace anisotropic PML with isotropic Absorber to
        # attenuate parallel-directed fields of oblique source
        cls.abs_layers = [mp.Absorber(thickness=cls.dpml, direction=mp.X)]

        wvl = 0.5  # center wavelength
        cls.fcen = 1 / wvl  # center frequency
        cls.df = 0.05 * cls.fcen  # frequency width

        cls.ng = 1.5
        cls.glass = mp.Medium(index=cls.ng)

        cls.geometry = [
            mp.Block(
                material=cls.glass,
                size=mp.Vector3(cls.dpml + cls.dsub, mp.inf, mp.inf),
                center=mp.Vector3(-0.5 * cls.sx + 0.5 * (cls.dpml + cls.dsub), 0, 0),
            ),
            mp.Block(
                material=cls.glass,
                size=mp.Vector3(cls.gh, cls.gdc * cls.gp, mp.inf),
                center=mp.Vector3(
                    -0.5 * cls.sx + cls.dpml + cls.dsub + 0.5 * cls.gh, 0, 0
                ),
            ),
        ]

    @parameterized.parameterized.expand([(0,), (10.7,)])
    def test_binary_grating_oblique(self, theta):
        # rotation angle of incident planewave
        # counterclockwise (CCW) about Z axis, 0 degrees along +X axis
        theta_in = math.radians(theta)

        # k (in source medium) with correct length (plane of incidence: XY)
        k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(0, 0, 1), theta_in)

        symmetries = []
        eig_parity = mp.ODD_Z
        if theta_in == 0:
            symmetries = [mp.Mirror(mp.Y)]
            eig_parity += mp.EVEN_Y

        def pw_amp(k, x0):
            def _pw_amp(x):
                return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))

            return _pw_amp

        src_pt = mp.Vector3(-0.5 * self.sx + self.dpml, 0, 0)
        sources = [
            mp.Source(
                mp.GaussianSource(self.fcen, fwidth=self.df),
                component=mp.Ez,  # S polarization
                center=src_pt,
                size=mp.Vector3(0, self.sy, 0),
                amp_func=pw_amp(k, src_pt),
            )
        ]

        sim = mp.Simulation(
            resolution=self.resolution,
            cell_size=self.cell_size,
            boundary_layers=self.abs_layers,
            k_point=k,
            default_material=self.glass,
            sources=sources,
            symmetries=symmetries,
        )

        refl_pt = mp.Vector3(-0.5 * self.sx + self.dpml + 0.5 * self.dsub, 0, 0)
        refl_flux = sim.add_flux(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.run(until_after_sources=mp.stop_when_dft_decayed())

        input_flux = mp.get_fluxes(refl_flux)
        input_flux_data = sim.get_flux_data(refl_flux)

        sim.reset_meep()

        sim = mp.Simulation(
            resolution=self.resolution,
            cell_size=self.cell_size,
            boundary_layers=self.abs_layers,
            geometry=self.geometry,
            k_point=k,
            sources=sources,
            symmetries=symmetries,
        )

        refl_flux = sim.add_flux(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.load_minus_flux_data(refl_flux, input_flux_data)

        tran_pt = mp.Vector3(0.5 * self.sx - self.dpml - 0.5 * self.dpad, 0, 0)
        tran_flux = sim.add_flux(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.run(until_after_sources=mp.stop_when_dft_decayed())

        # number of reflected orders
        nm_r = np.floor((self.fcen * self.ng - k.y) * self.gp) - np.ceil(
            (-self.fcen * self.ng - k.y) * self.gp
        )
        if theta_in == 0:
            nm_r = nm_r / 2  # since eig_parity removes degeneracy in y-direction
        nm_r = int(nm_r)

        res = sim.get_eigenmode_coefficients(
            refl_flux, range(1, nm_r + 1), eig_parity=eig_parity
        )
        r_coeffs = res.alpha

        Rsum = 0
        for nm in range(nm_r):
            Rsum += abs(r_coeffs[nm, 0, 1]) ** 2 / input_flux[0]

        # number of transmitted orders
        nm_t = np.floor((self.fcen - k.y) * self.gp) - np.ceil(
            (-self.fcen - k.y) * self.gp
        )
        if theta_in == 0:
            nm_t = nm_t / 2  # since eig_parity removes degeneracy in y-direction
        nm_t = int(nm_t)

        res = sim.get_eigenmode_coefficients(
            tran_flux, range(1, nm_t + 1), eig_parity=eig_parity
        )
        t_coeffs = res.alpha

        Tsum = 0
        for nm in range(nm_t):
            Tsum += abs(t_coeffs[nm, 0, 0]) ** 2 / input_flux[0]

        r_flux = mp.get_fluxes(refl_flux)
        t_flux = mp.get_fluxes(tran_flux)
        Rflux = -r_flux[0] / input_flux[0]
        Tflux = t_flux[0] / input_flux[0]

        print(f"refl:, {Rsum}, {Rflux}")
        print(f"tran:, {Tsum}, {Tflux}")
        print(f"sum:,  {Rsum + Tsum}, {Rflux + Tflux}")

        self.assertAlmostEqual(Rsum, Rflux, places=2)
        self.assertAlmostEqual(Tsum, Tflux, places=2)
        self.assertAlmostEqual(Rsum + Tsum, 1.00, places=2)

    @parameterized.parameterized.expand(
        [(13.2, "real/imag"), (17.7, "complex"), (21.2, "3d")]
    )
    def test_binary_grating_special_kz(self, theta, kz_2d):
        # rotation angle of incident planewave
        # counterclockwise (CCW) about Y axis, 0 degrees along +X axis
        theta_in = math.radians(theta)

        # k (in source medium) with correct length (plane of incidence: XZ)
        k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(0, 1, 0), theta_in)

        symmetries = [mp.Mirror(mp.Y)]

        def pw_amp(k, x0):
            def _pw_amp(x):
                return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))

            return _pw_amp

        src_pt = mp.Vector3(-0.5 * self.sx + self.dpml, 0, 0)
        sources = [
            mp.Source(
                mp.GaussianSource(self.fcen, fwidth=self.df),
                component=mp.Ez,
                center=src_pt,
                size=mp.Vector3(0, self.sy, 0),
                amp_func=pw_amp(k, src_pt),
            )
        ]

        sim = mp.Simulation(
            resolution=self.resolution,
            cell_size=self.cell_size,
            boundary_layers=self.abs_layers,
            k_point=k,
            default_material=self.glass,
            sources=sources,
            symmetries=symmetries,
            kz_2d=kz_2d,
        )

        refl_pt = mp.Vector3(-0.5 * self.sx + self.dpml + 0.5 * self.dsub, 0, 0)
        refl_flux = sim.add_mode_monitor(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.run(until_after_sources=mp.stop_when_dft_decayed())

        input_flux = mp.get_fluxes(refl_flux)
        input_flux_data = sim.get_flux_data(refl_flux)

        sim.reset_meep()

        sim = mp.Simulation(
            resolution=self.resolution,
            cell_size=self.cell_size,
            boundary_layers=self.abs_layers,
            geometry=self.geometry,
            k_point=k,
            sources=sources,
            symmetries=symmetries,
            kz_2d=kz_2d,
        )

        refl_flux = sim.add_mode_monitor(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.load_minus_flux_data(refl_flux, input_flux_data)

        tran_pt = mp.Vector3(0.5 * self.sx - self.dpml - 0.5 * self.dpad, 0, 0)
        tran_flux = sim.add_mode_monitor(
            self.fcen,
            0,
            1,
            mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, self.sy, 0)),
        )

        sim.run(until_after_sources=mp.stop_when_dft_decayed())

        # number of reflected orders
        nm_r = np.ceil(
            (np.sqrt((self.fcen * self.ng) ** 2 - k.z**2) - k.y) * self.gp
        ) - np.floor((-np.sqrt((self.fcen * self.ng) ** 2 - k.z**2) - k.y) * self.gp)
        nm_r = int(nm_r / 2)

        Rsum = 0
        for nm in range(nm_r):
            for S_pol in [False, True]:
                res = sim.get_eigenmode_coefficients(
                    refl_flux,
                    mp.DiffractedPlanewave(
                        [0, nm, 0],
                        mp.Vector3(1, 0, 0),
                        1 if S_pol else 0,
                        0 if S_pol else 1,
                    ),
                )
                r_coeffs = res.alpha
                Rmode = abs(r_coeffs[0, 0, 1]) ** 2 / input_flux[0]
                print(
                    "refl-order:, {}, {}, {}".format("s" if S_pol else "p", nm, Rmode)
                )
                Rsum += Rmode if nm == 0 else 2 * Rmode

        # number of transmitted orders
        nm_t = np.ceil((np.sqrt(self.fcen**2 - k.z**2) - k.y) * self.gp) - np.floor(
            (-np.sqrt(self.fcen**2 - k.z**2) - k.y) * self.gp
        )
        nm_t = int(nm_t / 2)

        Tsum = 0
        for nm in range(nm_t):
            for S_pol in [False, True]:
                res = sim.get_eigenmode_coefficients(
                    tran_flux,
                    mp.DiffractedPlanewave(
                        [0, nm, 0],
                        mp.Vector3(1, 0, 0),
                        1 if S_pol else 0,
                        0 if S_pol else 1,
                    ),
                )
                t_coeffs = res.alpha
                Tmode = abs(t_coeffs[0, 0, 0]) ** 2 / input_flux[0]
                print(
                    "tran-order:, {}, {}, {}".format("s" if S_pol else "p", nm, Tmode)
                )
                Tsum += Tmode if nm == 0 else 2 * Tmode

        r_flux = mp.get_fluxes(refl_flux)
        t_flux = mp.get_fluxes(tran_flux)
        Rflux = -r_flux[0] / input_flux[0]
        Tflux = t_flux[0] / input_flux[0]

        print(f"refl:, {Rsum}, {Rflux}")
        print(f"tran:, {Tsum}, {Tflux}")
        print(f"sum:,  {Rsum + Tsum}, {Rflux + Tflux}")

        self.assertAlmostEqual(Rsum, Rflux, places=2)
        self.assertAlmostEqual(Tsum, Tflux, places=2)
        self.assertAlmostEqual(Rsum + Tsum, 1.00, places=2)


if __name__ == "__main__":
    unittest.main()