1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
import cmath
import math
import unittest
import numpy as np
import parameterized
import meep as mp
class TestEigCoeffs(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.resolution = 30 # pixels/μm
cls.dpml = 1.0 # PML thickness
cls.dsub = 1.0 # substrate thickness
cls.dpad = 1.0 # padding thickness between grating and PML
cls.gp = 6.0 # grating period
cls.gh = 0.5 # grating height
cls.gdc = 0.5 # grating duty cycle
cls.sx = cls.dpml + cls.dsub + cls.gh + cls.dpad + cls.dpml
cls.sy = cls.gp
cls.cell_size = mp.Vector3(cls.sx, cls.sy, 0)
# replace anisotropic PML with isotropic Absorber to
# attenuate parallel-directed fields of oblique source
cls.abs_layers = [mp.Absorber(thickness=cls.dpml, direction=mp.X)]
wvl = 0.5 # center wavelength
cls.fcen = 1 / wvl # center frequency
cls.df = 0.05 * cls.fcen # frequency width
cls.ng = 1.5
cls.glass = mp.Medium(index=cls.ng)
cls.geometry = [
mp.Block(
material=cls.glass,
size=mp.Vector3(cls.dpml + cls.dsub, mp.inf, mp.inf),
center=mp.Vector3(-0.5 * cls.sx + 0.5 * (cls.dpml + cls.dsub), 0, 0),
),
mp.Block(
material=cls.glass,
size=mp.Vector3(cls.gh, cls.gdc * cls.gp, mp.inf),
center=mp.Vector3(
-0.5 * cls.sx + cls.dpml + cls.dsub + 0.5 * cls.gh, 0, 0
),
),
]
@parameterized.parameterized.expand([(0,), (10.7,)])
def test_binary_grating_oblique(self, theta):
# rotation angle of incident planewave
# counterclockwise (CCW) about Z axis, 0 degrees along +X axis
theta_in = math.radians(theta)
# k (in source medium) with correct length (plane of incidence: XY)
k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(0, 0, 1), theta_in)
symmetries = []
eig_parity = mp.ODD_Z
if theta_in == 0:
symmetries = [mp.Mirror(mp.Y)]
eig_parity += mp.EVEN_Y
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(-0.5 * self.sx + self.dpml, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(self.fcen, fwidth=self.df),
component=mp.Ez, # S polarization
center=src_pt,
size=mp.Vector3(0, self.sy, 0),
amp_func=pw_amp(k, src_pt),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=self.cell_size,
boundary_layers=self.abs_layers,
k_point=k,
default_material=self.glass,
sources=sources,
symmetries=symmetries,
)
refl_pt = mp.Vector3(-0.5 * self.sx + self.dpml + 0.5 * self.dsub, 0, 0)
refl_flux = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
input_flux = mp.get_fluxes(refl_flux)
input_flux_data = sim.get_flux_data(refl_flux)
sim.reset_meep()
sim = mp.Simulation(
resolution=self.resolution,
cell_size=self.cell_size,
boundary_layers=self.abs_layers,
geometry=self.geometry,
k_point=k,
sources=sources,
symmetries=symmetries,
)
refl_flux = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.load_minus_flux_data(refl_flux, input_flux_data)
tran_pt = mp.Vector3(0.5 * self.sx - self.dpml - 0.5 * self.dpad, 0, 0)
tran_flux = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
# number of reflected orders
nm_r = np.floor((self.fcen * self.ng - k.y) * self.gp) - np.ceil(
(-self.fcen * self.ng - k.y) * self.gp
)
if theta_in == 0:
nm_r = nm_r / 2 # since eig_parity removes degeneracy in y-direction
nm_r = int(nm_r)
res = sim.get_eigenmode_coefficients(
refl_flux, range(1, nm_r + 1), eig_parity=eig_parity
)
r_coeffs = res.alpha
Rsum = 0
for nm in range(nm_r):
Rsum += abs(r_coeffs[nm, 0, 1]) ** 2 / input_flux[0]
# number of transmitted orders
nm_t = np.floor((self.fcen - k.y) * self.gp) - np.ceil(
(-self.fcen - k.y) * self.gp
)
if theta_in == 0:
nm_t = nm_t / 2 # since eig_parity removes degeneracy in y-direction
nm_t = int(nm_t)
res = sim.get_eigenmode_coefficients(
tran_flux, range(1, nm_t + 1), eig_parity=eig_parity
)
t_coeffs = res.alpha
Tsum = 0
for nm in range(nm_t):
Tsum += abs(t_coeffs[nm, 0, 0]) ** 2 / input_flux[0]
r_flux = mp.get_fluxes(refl_flux)
t_flux = mp.get_fluxes(tran_flux)
Rflux = -r_flux[0] / input_flux[0]
Tflux = t_flux[0] / input_flux[0]
print(f"refl:, {Rsum}, {Rflux}")
print(f"tran:, {Tsum}, {Tflux}")
print(f"sum:, {Rsum + Tsum}, {Rflux + Tflux}")
self.assertAlmostEqual(Rsum, Rflux, places=2)
self.assertAlmostEqual(Tsum, Tflux, places=2)
self.assertAlmostEqual(Rsum + Tsum, 1.00, places=2)
@parameterized.parameterized.expand(
[(13.2, "real/imag"), (17.7, "complex"), (21.2, "3d")]
)
def test_binary_grating_special_kz(self, theta, kz_2d):
# rotation angle of incident planewave
# counterclockwise (CCW) about Y axis, 0 degrees along +X axis
theta_in = math.radians(theta)
# k (in source medium) with correct length (plane of incidence: XZ)
k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(0, 1, 0), theta_in)
symmetries = [mp.Mirror(mp.Y)]
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(-0.5 * self.sx + self.dpml, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(self.fcen, fwidth=self.df),
component=mp.Ez,
center=src_pt,
size=mp.Vector3(0, self.sy, 0),
amp_func=pw_amp(k, src_pt),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=self.cell_size,
boundary_layers=self.abs_layers,
k_point=k,
default_material=self.glass,
sources=sources,
symmetries=symmetries,
kz_2d=kz_2d,
)
refl_pt = mp.Vector3(-0.5 * self.sx + self.dpml + 0.5 * self.dsub, 0, 0)
refl_flux = sim.add_mode_monitor(
self.fcen,
0,
1,
mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
input_flux = mp.get_fluxes(refl_flux)
input_flux_data = sim.get_flux_data(refl_flux)
sim.reset_meep()
sim = mp.Simulation(
resolution=self.resolution,
cell_size=self.cell_size,
boundary_layers=self.abs_layers,
geometry=self.geometry,
k_point=k,
sources=sources,
symmetries=symmetries,
kz_2d=kz_2d,
)
refl_flux = sim.add_mode_monitor(
self.fcen,
0,
1,
mp.FluxRegion(center=refl_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.load_minus_flux_data(refl_flux, input_flux_data)
tran_pt = mp.Vector3(0.5 * self.sx - self.dpml - 0.5 * self.dpad, 0, 0)
tran_flux = sim.add_mode_monitor(
self.fcen,
0,
1,
mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, self.sy, 0)),
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
# number of reflected orders
nm_r = np.ceil(
(np.sqrt((self.fcen * self.ng) ** 2 - k.z**2) - k.y) * self.gp
) - np.floor((-np.sqrt((self.fcen * self.ng) ** 2 - k.z**2) - k.y) * self.gp)
nm_r = int(nm_r / 2)
Rsum = 0
for nm in range(nm_r):
for S_pol in [False, True]:
res = sim.get_eigenmode_coefficients(
refl_flux,
mp.DiffractedPlanewave(
[0, nm, 0],
mp.Vector3(1, 0, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
r_coeffs = res.alpha
Rmode = abs(r_coeffs[0, 0, 1]) ** 2 / input_flux[0]
print(
"refl-order:, {}, {}, {}".format("s" if S_pol else "p", nm, Rmode)
)
Rsum += Rmode if nm == 0 else 2 * Rmode
# number of transmitted orders
nm_t = np.ceil((np.sqrt(self.fcen**2 - k.z**2) - k.y) * self.gp) - np.floor(
(-np.sqrt(self.fcen**2 - k.z**2) - k.y) * self.gp
)
nm_t = int(nm_t / 2)
Tsum = 0
for nm in range(nm_t):
for S_pol in [False, True]:
res = sim.get_eigenmode_coefficients(
tran_flux,
mp.DiffractedPlanewave(
[0, nm, 0],
mp.Vector3(1, 0, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
t_coeffs = res.alpha
Tmode = abs(t_coeffs[0, 0, 0]) ** 2 / input_flux[0]
print(
"tran-order:, {}, {}, {}".format("s" if S_pol else "p", nm, Tmode)
)
Tsum += Tmode if nm == 0 else 2 * Tmode
r_flux = mp.get_fluxes(refl_flux)
t_flux = mp.get_fluxes(tran_flux)
Rflux = -r_flux[0] / input_flux[0]
Tflux = t_flux[0] / input_flux[0]
print(f"refl:, {Rsum}, {Rflux}")
print(f"tran:, {Tsum}, {Tflux}")
print(f"sum:, {Rsum + Tsum}, {Rflux + Tflux}")
self.assertAlmostEqual(Rsum, Rflux, places=2)
self.assertAlmostEqual(Tsum, Tflux, places=2)
self.assertAlmostEqual(Rsum + Tsum, 1.00, places=2)
if __name__ == "__main__":
unittest.main()
|