1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
import cmath
import math
import unittest
import numpy as np
import meep as mp
# Computes the mode coefficient of the transmitted orders of
# a binary grating given an incident planewave and verifies
# that the results are the same when using either a band number
# or `DiffractedPlanewave` object in `get_eigenmode_coefficients`.
class TestDiffractedPlanewave(unittest.TestCase):
@classmethod
def setUp(cls):
cls.resolution = 50 # pixels/um
cls.dpml = 1.0 # PML thickness
cls.dsub = 3.0 # substrate thickness
cls.dpad = 3.0 # length of padding between grating and PML
cls.wvl = 0.5 # center wavelength
cls.fcen = 1 / cls.wvl # center frequency
cls.ng = 1.5
cls.glass = mp.Medium(index=cls.ng)
cls.pml_layers = [mp.PML(thickness=cls.dpml, direction=mp.X)]
def run_binary_grating_diffraction(self, gp, gh, gdc, theta):
sx = self.dpml + self.dsub + gh + self.dpad + self.dpml
sy = gp
cell_size = mp.Vector3(sx, sy, 0)
# rotation angle of incident planewave
# counter clockwise (CCW) about Z axis, 0 degrees along +X axis
theta_in = math.radians(theta)
# k (in source medium) with correct length (plane of incidence: XY)
k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(z=1), theta_in)
eig_parity = mp.ODD_Z
if theta == 0:
k = mp.Vector3()
eig_parity += mp.EVEN_Y
symmetries = [mp.Mirror(direction=mp.Y)]
else:
symmetries = []
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(-0.5 * sx + self.dpml, 0, 0)
sources = [
mp.Source(
mp.GaussianSource(self.fcen, fwidth=0.1 * self.fcen),
component=mp.Ez,
center=src_pt,
size=mp.Vector3(0, sy, 0),
amp_func=pw_amp(k, src_pt),
)
]
geometry = [
mp.Block(
material=self.glass,
size=mp.Vector3(self.dpml + self.dsub, mp.inf, mp.inf),
center=mp.Vector3(-0.5 * sx + 0.5 * (self.dpml + self.dsub), 0, 0),
),
mp.Block(
material=self.glass,
size=mp.Vector3(gh, gdc * gp, mp.inf),
center=mp.Vector3(-0.5 * sx + self.dpml + self.dsub + 0.5 * gh, 0, 0),
),
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=cell_size,
boundary_layers=self.pml_layers,
geometry=geometry,
k_point=k,
sources=sources,
symmetries=symmetries,
)
tran_pt = mp.Vector3(0.5 * sx - self.dpml, 0, 0)
tran_flux = sim.add_mode_monitor(
self.fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
)
sim.run(
until_after_sources=mp.stop_when_fields_decayed(20, mp.Ez, src_pt, 1e-6)
)
m_plus = int(np.floor((self.fcen - k.y) * gp))
m_minus = int(np.ceil((-self.fcen - k.y) * gp))
if theta == 0:
orders = range(m_plus)
else:
# ordering of the modes computed by MPB is according to *decreasing*
# values of kx (i.e., closest to propagation direction of 0° or +x)
ms = range(m_minus, m_plus + 1)
kx = lambda m: np.power(self.fcen, 2) - np.power(k.y + m / gp, 2)
kxs = [kx(m) for m in ms]
ids = np.flip(np.argsort(kxs))
orders = [ms[d] for d in ids]
for band, order in enumerate(orders):
res = sim.get_eigenmode_coefficients(
tran_flux, [band + 1], eig_parity=eig_parity
)
tran_ref = abs(res.alpha[0, 0, 0]) ** 2
if theta == 0:
tran_ref = 0.5 * tran_ref
vg_ref = res.vgrp[0]
kdom_ref = res.kdom[0]
res = sim.get_eigenmode_coefficients(
tran_flux,
mp.DiffractedPlanewave((0, order, 0), mp.Vector3(0, 1, 0), 1, 0),
)
tran_dp = abs(res.alpha[0, 0, 0]) ** 2
if (theta == 0) and (order == 0):
tran_dp = 0.5 * tran_dp
vg_dp = res.vgrp[0]
kdom_dp = res.kdom[0]
err = abs(tran_ref - tran_dp) / tran_ref
print(
"tran:, {:2d} (band), {:2d} (order), "
"{:10.8f} (band num.), {:10.8f} (diff. pw.), "
"{:10.8f} (error)".format(band, order, tran_ref, tran_dp, err)
)
self.assertAlmostEqual(vg_ref, vg_dp, places=4)
self.assertAlmostEqual(tran_ref, tran_dp, places=4)
if theta == 0:
self.assertAlmostEqual(abs(kdom_ref.x), kdom_dp.x, places=5)
self.assertAlmostEqual(abs(kdom_ref.y), kdom_dp.y, places=5)
self.assertAlmostEqual(abs(kdom_ref.z), kdom_dp.z, places=5)
else:
self.assertAlmostEqual(kdom_ref.x, kdom_dp.x, places=5)
self.assertAlmostEqual(kdom_ref.y, kdom_dp.y, places=5)
self.assertAlmostEqual(kdom_ref.z, kdom_dp.z, places=5)
print("PASSED.")
def test_diffracted_planewave(self):
self.run_binary_grating_diffraction(2.6, 0.4, 0.6, 0)
self.run_binary_grating_diffraction(2.6, 0.4, 0.6, 13.4)
# self.run_binary_grating_diffraction(10.0,0.5,0.5,0)
# self.run_binary_grating_diffraction(10.0,0.5,0.5,10.7)
if __name__ == "__main__":
unittest.main()
|