File: test_diffracted_planewave.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (163 lines) | stat: -rw-r--r-- 5,729 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import cmath
import math
import unittest

import numpy as np

import meep as mp

# Computes the mode coefficient of the transmitted orders of
# a binary grating given an incident planewave and verifies
# that the results are the same when using either a band number
# or `DiffractedPlanewave` object in `get_eigenmode_coefficients`.


class TestDiffractedPlanewave(unittest.TestCase):
    @classmethod
    def setUp(cls):
        cls.resolution = 50  # pixels/um
        cls.dpml = 1.0  # PML thickness
        cls.dsub = 3.0  # substrate thickness
        cls.dpad = 3.0  # length of padding between grating and PML

        cls.wvl = 0.5  # center wavelength
        cls.fcen = 1 / cls.wvl  # center frequency

        cls.ng = 1.5
        cls.glass = mp.Medium(index=cls.ng)

        cls.pml_layers = [mp.PML(thickness=cls.dpml, direction=mp.X)]

    def run_binary_grating_diffraction(self, gp, gh, gdc, theta):
        sx = self.dpml + self.dsub + gh + self.dpad + self.dpml
        sy = gp
        cell_size = mp.Vector3(sx, sy, 0)

        # rotation angle of incident planewave
        # counter clockwise (CCW) about Z axis, 0 degrees along +X axis
        theta_in = math.radians(theta)

        # k (in source medium) with correct length (plane of incidence: XY)
        k = mp.Vector3(self.fcen * self.ng).rotate(mp.Vector3(z=1), theta_in)

        eig_parity = mp.ODD_Z
        if theta == 0:
            k = mp.Vector3()
            eig_parity += mp.EVEN_Y
            symmetries = [mp.Mirror(direction=mp.Y)]
        else:
            symmetries = []

        def pw_amp(k, x0):
            def _pw_amp(x):
                return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))

            return _pw_amp

        src_pt = mp.Vector3(-0.5 * sx + self.dpml, 0, 0)
        sources = [
            mp.Source(
                mp.GaussianSource(self.fcen, fwidth=0.1 * self.fcen),
                component=mp.Ez,
                center=src_pt,
                size=mp.Vector3(0, sy, 0),
                amp_func=pw_amp(k, src_pt),
            )
        ]

        geometry = [
            mp.Block(
                material=self.glass,
                size=mp.Vector3(self.dpml + self.dsub, mp.inf, mp.inf),
                center=mp.Vector3(-0.5 * sx + 0.5 * (self.dpml + self.dsub), 0, 0),
            ),
            mp.Block(
                material=self.glass,
                size=mp.Vector3(gh, gdc * gp, mp.inf),
                center=mp.Vector3(-0.5 * sx + self.dpml + self.dsub + 0.5 * gh, 0, 0),
            ),
        ]

        sim = mp.Simulation(
            resolution=self.resolution,
            cell_size=cell_size,
            boundary_layers=self.pml_layers,
            geometry=geometry,
            k_point=k,
            sources=sources,
            symmetries=symmetries,
        )

        tran_pt = mp.Vector3(0.5 * sx - self.dpml, 0, 0)
        tran_flux = sim.add_mode_monitor(
            self.fcen, 0, 1, mp.FluxRegion(center=tran_pt, size=mp.Vector3(0, sy, 0))
        )

        sim.run(
            until_after_sources=mp.stop_when_fields_decayed(20, mp.Ez, src_pt, 1e-6)
        )

        m_plus = int(np.floor((self.fcen - k.y) * gp))
        m_minus = int(np.ceil((-self.fcen - k.y) * gp))

        if theta == 0:
            orders = range(m_plus)
        else:
            # ordering of the modes computed by MPB is according to *decreasing*
            # values of kx (i.e., closest to propagation direction of 0° or +x)
            ms = range(m_minus, m_plus + 1)
            kx = lambda m: np.power(self.fcen, 2) - np.power(k.y + m / gp, 2)
            kxs = [kx(m) for m in ms]
            ids = np.flip(np.argsort(kxs))
            orders = [ms[d] for d in ids]

        for band, order in enumerate(orders):
            res = sim.get_eigenmode_coefficients(
                tran_flux, [band + 1], eig_parity=eig_parity
            )
            tran_ref = abs(res.alpha[0, 0, 0]) ** 2
            if theta == 0:
                tran_ref = 0.5 * tran_ref
            vg_ref = res.vgrp[0]
            kdom_ref = res.kdom[0]

            res = sim.get_eigenmode_coefficients(
                tran_flux,
                mp.DiffractedPlanewave((0, order, 0), mp.Vector3(0, 1, 0), 1, 0),
            )
            tran_dp = abs(res.alpha[0, 0, 0]) ** 2
            if (theta == 0) and (order == 0):
                tran_dp = 0.5 * tran_dp
            vg_dp = res.vgrp[0]
            kdom_dp = res.kdom[0]

            err = abs(tran_ref - tran_dp) / tran_ref
            print(
                "tran:, {:2d} (band), {:2d} (order), "
                "{:10.8f} (band num.), {:10.8f} (diff. pw.), "
                "{:10.8f} (error)".format(band, order, tran_ref, tran_dp, err)
            )

            self.assertAlmostEqual(vg_ref, vg_dp, places=4)
            self.assertAlmostEqual(tran_ref, tran_dp, places=4)
            if theta == 0:
                self.assertAlmostEqual(abs(kdom_ref.x), kdom_dp.x, places=5)
                self.assertAlmostEqual(abs(kdom_ref.y), kdom_dp.y, places=5)
                self.assertAlmostEqual(abs(kdom_ref.z), kdom_dp.z, places=5)
            else:
                self.assertAlmostEqual(kdom_ref.x, kdom_dp.x, places=5)
                self.assertAlmostEqual(kdom_ref.y, kdom_dp.y, places=5)
                self.assertAlmostEqual(kdom_ref.z, kdom_dp.z, places=5)

        print("PASSED.")

    def test_diffracted_planewave(self):
        self.run_binary_grating_diffraction(2.6, 0.4, 0.6, 0)
        self.run_binary_grating_diffraction(2.6, 0.4, 0.6, 13.4)

        # self.run_binary_grating_diffraction(10.0,0.5,0.5,0)
        # self.run_binary_grating_diffraction(10.0,0.5,0.5,10.7)


if __name__ == "__main__":
    unittest.main()