1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
import meep as mp
try:
import meep.adjoint as mpa
except:
import adjoint as mpa
import unittest
import numpy as np
from scipy.ndimage import gaussian_filter
def compute_transmittance(matgrid_symmetry=False):
resolution = 25
cell_size = mp.Vector3(6, 6, 0)
boundary_layers = [mp.PML(thickness=1.0)]
matgrid_size = mp.Vector3(2, 2, 0)
matgrid_resolution = 2 * resolution
Nx, Ny = int(matgrid_size.x * matgrid_resolution), int(
matgrid_size.y * matgrid_resolution
)
# ensure reproducible results
rng = np.random.RandomState(2069588)
w = rng.rand(Nx, Ny)
weights = w if matgrid_symmetry else 0.5 * (w + np.fliplr(w))
matgrid = mp.MaterialGrid(
mp.Vector3(Nx, Ny),
mp.air,
mp.Medium(index=3.5),
weights=weights,
do_averaging=False,
grid_type="U_MEAN",
)
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(mp.inf, 1.0, mp.inf),
material=mp.Medium(index=3.5),
),
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(matgrid_size.x, matgrid_size.y, 0),
material=matgrid,
),
]
if matgrid_symmetry:
geometry.append(
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(matgrid_size.x, matgrid_size.y, 0),
material=matgrid,
e2=mp.Vector3(y=-1),
)
)
eig_parity = mp.ODD_Y + mp.EVEN_Z
fcen = 0.65
df = 0.2 * fcen
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=df),
center=mp.Vector3(-2.0, 0),
size=mp.Vector3(0, 4.0),
eig_parity=eig_parity,
)
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
sources=sources,
geometry=geometry,
)
mode_mon = sim.add_flux(
fcen, 0, 1, mp.FluxRegion(center=mp.Vector3(2.0, 0), size=mp.Vector3(0, 4.0))
)
sim.run(until_after_sources=mp.stop_when_dft_decayed())
mode_coeff = sim.get_eigenmode_coefficients(mode_mon, [1], eig_parity).alpha[
0, :, 0
][0]
tran = np.power(np.abs(mode_coeff), 2)
print(f'tran:, {"sym" if matgrid_symmetry else "nosym"}, {tran}')
return tran
def compute_resonant_mode_2d(res, default_mat=False):
cell_size = mp.Vector3(1, 1, 0)
rad = 0.301943
fcen = 0.3
df = 0.2 * fcen
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=mp.Hz,
center=mp.Vector3(-0.1057, 0.2094, 0),
)
]
k_point = mp.Vector3(0.3892, 0.1597, 0)
matgrid_size = mp.Vector3(1, 1, 0)
matgrid_resolution = 1200
# for a fixed resolution, compute the number of grid points
# necessary which are defined on the corners of the voxels
Nx, Ny = int(matgrid_size.x * matgrid_resolution), int(
matgrid_size.y * matgrid_resolution
)
x = np.linspace(-0.5 * matgrid_size.x, 0.5 * matgrid_size.x, Nx)
y = np.linspace(-0.5 * matgrid_size.y, 0.5 * matgrid_size.y, Ny)
xv, yv = np.meshgrid(x, y)
weights = np.sqrt(np.square(xv) + np.square(yv)) < rad
filtered_weights = gaussian_filter(weights, sigma=3.0, output=np.double)
matgrid = mp.MaterialGrid(
mp.Vector3(Nx, Ny),
mp.air,
mp.Medium(index=3.5),
weights=filtered_weights,
do_averaging=True,
beta=1000,
eta=0.5,
)
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(matgrid_size.x, matgrid_size.y, 0),
material=matgrid,
)
]
sim = mp.Simulation(
resolution=res,
cell_size=cell_size,
default_material=matgrid if default_mat else mp.Medium(),
geometry=[] if default_mat else geometry,
sources=sources,
k_point=k_point,
)
h = mp.Harminv(mp.Hz, mp.Vector3(0.3718, -0.2076), fcen, df)
sim.run(mp.after_sources(h), until_after_sources=200)
try:
for m in h.modes:
print(f"harminv:, {res}, {m.freq}, {m.Q}")
freq = h.modes[0].freq
except:
raise RuntimeError("No resonant modes found.")
return freq
def compute_resonant_mode_3d(use_matgrid=True):
resolution = 25
wvl = 1.27
fcen = 1 / wvl
df = 0.02 * fcen
nSi = 3.45
Si = mp.Medium(index=nSi)
nSiO2 = 1.45
SiO2 = mp.Medium(index=nSiO2)
s = 1.0
cell_size = mp.Vector3(s, s, s)
rad = 0.34 # radius of sphere
if use_matgrid:
matgrid_resolution = 2 * resolution
N = int(s * matgrid_resolution)
coord = np.linspace(-0.5 * s, 0.5 * s, N)
xv, yv, zv = np.meshgrid(coord, coord, coord)
weights = np.sqrt(np.square(xv) + np.square(yv) + np.square(zv)) < rad
filtered_weights = gaussian_filter(
weights, sigma=4 / resolution, output=np.double
)
matgrid = mp.MaterialGrid(
mp.Vector3(N, N, N),
SiO2,
Si,
weights=filtered_weights,
do_averaging=True,
beta=1000,
eta=0.5,
)
geometry = [mp.Block(center=mp.Vector3(), size=cell_size, material=matgrid)]
else:
geometry = [mp.Sphere(center=mp.Vector3(), radius=rad, material=Si)]
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=df),
size=mp.Vector3(),
center=mp.Vector3(0.13, 0.25, 0.06),
component=mp.Ez,
)
]
k_point = mp.Vector3(0.23, -0.17, 0.35)
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
sources=sources,
default_material=SiO2,
k_point=k_point,
geometry=geometry,
)
h = mp.Harminv(mp.Ez, mp.Vector3(-0.2684, 0.1185, 0.0187), fcen, df)
sim.run(mp.after_sources(h), until_after_sources=200)
try:
for m in h.modes:
print(f"harminv:, {resolution}, {m.freq}, {m.Q}")
freq = h.modes[0].freq
except:
raise RuntimeError("No resonant modes found.")
return freq
class TestMaterialGrid(unittest.TestCase):
def test_subpixel_smoothing(self):
# "exact" frequency computed using MaterialGrid at resolution = 300
freq_ref = 0.29826813873225283
res = [25, 50]
freq_matgrid = []
for r in res:
freq_matgrid.append(compute_resonant_mode_2d(r))
# verify that the frequency of the resonant mode is
# approximately equal to the reference value
self.assertAlmostEqual(freq_ref, freq_matgrid[-1], 2)
# verify that the relative error is decreasing with increasing resolution
# and is better than linear convergence because of subpixel smoothing
self.assertLess(
abs(freq_matgrid[1] - freq_ref) * (res[1] / res[0]),
abs(freq_matgrid[0] - freq_ref),
)
freq_matgrid_default_mat = compute_resonant_mode_2d(res[0], True)
self.assertAlmostEqual(freq_matgrid[0], freq_matgrid_default_mat)
def test_matgrid_3d(self):
freq_matgrid = compute_resonant_mode_3d(True)
freq_geomobj = compute_resonant_mode_3d(False)
self.assertAlmostEqual(freq_matgrid, freq_geomobj, places=2)
def test_symmetry(self):
tran_nosym = compute_transmittance(False)
tran_sym = compute_transmittance(True)
self.assertAlmostEqual(tran_nosym, tran_sym, places=5)
if __name__ == "__main__":
unittest.main()
|